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Abstract. Robust autonomy and interaction of robots with their envi-
ronment, even in rare or new situations, is an ultimate goal of robotics
research. We settle on Statistical Model Checking (SMC) for the bene-
fit of robustness of robot deliberation and base our implementation on
STORM, one of the most performant and comprehensive open-source
model checkers, so far lacking an SMC extension. The SMC extension
introduced in this paper o!ers various statistical methods, from which the
user can choose to find the best trade-o! between accuracy of the result
and runtime. We demonstrate the e"ciency of our SMC implementation
by comparing it to other state-of-the-art SMC tools on well-established
benchmarks and on a robotics-related example. The results indicate that
our implementation, which will be continuously extended in the future
to improve support for robotics use cases, is performant enough to bridge
the gap between robotic systems and model checking in industry.
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1 Introduction

Despite the improvements of both hardware and software capabilities, robots
are still struggling to cope robustly with unknown situations in unstructured
environments, e.g., when cleaning in households or public spaces. This is due to
a lack of methods and tools to validate complex robotic systems e!ciently as a
whole, despite the longstanding problem of verification and validation (V&V) of
autonomous systems. With the growing need for reliable robots, model checking
(MC) is becoming an increasingly relevant tool for the robotics community. So
far, it has only been taken into consideration on small parts of a full robotic sys-
tem, because it was unclear how to get consistent full models that are verifiable
in a reasonable time [24,50,44,6,22,21], though recent works are starting to look
into this modeling problem [33]. In the present paper, our aim is to pave the
way for e!cient verification of complex models with di"erent interacting parts
like the ones representing full robotic systems.

MC is a fully automated formal method for finding flaws in system functional-
ities [3], enabling developers to produce ever more robust systems [28]. Based on
a formal model of a system it is checked whether the system satisfies a property
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expressed in a temporal logic formula. For probabilistic models, the probability
that the formula is satisfied is determined [17]. Model checking comes in two
flavors. The classical approach [18] builds the complete state space of the model
to validate the property under investigation. The need to construct the model
and explore it entirely makes explicit-state model checking extremely sensitive
to the system’s complexity and size [16]. Its usefulness for industrial developers
is often reduced because of an exponential explosion in the number of elements
to explore, known as the state space explosion problem.

To solve this problem, statistical model checking (SMC) [32,41,37,42,51] re-
duces the model checking procedure to a matter of statistical inference, where
the model is evaluated by simulating sample executions (or traces) to get statis-
tical evidence whether a property holds. This is also called Monte Carlo Simu-
lation [46]. The model of the system is not completely explored, but iteratively
sampled, and the results are statistically evaluated. The resulting information
is used to determine the model checking result within a certain confidence in-
terval defined by the user. This makes it possible to perform MC on systems
that are too large to be evaluated using numerical model checking, providing
developers with an alternative to unit and real-life system tests that is more
reliable and can provide statistical guarantees on the result. In general, this
approach is only applicable to deterministic models because during simulation
nondeterminism would have to be resolved to continue the traces. Therefore, we
concentrate on discrete-time Markov chains (DTMCs) in this first work. There
are approaches to find the best scheduler wrt. the property under investigation
to resolve nondeterminism in Markov decision processes (MDPs) when perform-
ing SMC [7,9,30,23,2], but the consideration of those techniques is left for future
extensions.

In the state of the art there are many tools [4,11] implementing e!cient
flavors of statistical model checking algorithms for di"erent types of quantita-
tive models, like PRISM [34], STORM [31], The MODEST Toolset [27], and
UPPAAL [40].

The PRISM model checker [34] is a tool that has been applied in many appli-
cation domains over years, including communication and multimedia protocols,
for formal modelling and analysis. It is implemented in Java and its code is open
source. It is accompanied by many benchmarks in the PRISM language [36] and
contains an SMC engine which is taken into consideration for the performance
comparison in Sec. 3.

The STORM model checker [31] is a tool for the analysis of systems in-
volving random or probabilistic phenomena supporting several automata-based
formalisms. It is implemented in C++, and is also available open source. STORM
provides multiple engines implementing both classical and semi-statistical meth-
ods to evaluate models that, depending on the type, can be provided in several
formats. This includes the JANI [10] and the PRISM [36] formats, that are the
ones supporting DTMCs and MDPs. As demonstrated in competitions [11], it
is highly performant. On the other hand, it does not natively provide a SMC
implementation. StormDftRes [1], the only extension of STORM using SMC
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techniques, targets a very specific set of models (Dynamic Fault Trees) and no
DTMCs. This motivates the contributions of this work, that aims at providing
an open source tool performant enough to be used on running systems, for which
the use of a performant model checker such as STORM seems to be beneficial.

The MODEST Toolset [27,7,9] also supports a wide range of automata types
centered around stochastic hybrid automata in both classical and statistical
methods for model checking. It is implemented in C# and the executable is
publicly available for research use but it is closed source. The toolset accepts
inputs in its own MODEST language [26] as well as JANI and o"ers various
analysis backends. The various statistical methods implemented in modes [9],
the SMC tool of The MODEST Toolset, were the main source of inspiration for
the algorithms implemented for smc_storm in this work.

UPPAAL [5,38,39,40] is a comprehensive tool consisting of several engines
dealing with networks of timed automata modeling real-time systems. This
makes it especially interesting for industrial use cases as shown in many case
studies. It is implemented in Java and the executable is publicly available for aca-
demic use but it is closed source. The tool comes with its own non-deterministic
guarded command input language, a simulator and a symbolic as well as a sta-
tistical model checking engine [20]. It is the only tool listed here which provides
graphical user interaction via a system editor, a graphical simulator, and a re-
quirement specification editor.

Our goal in this work is to contribute a performant, open source SMC tool ac-
cessible for many users by a commonly used input format. Such a well-established
input format is JANI [10], whose aim is to foster tool interaction and interop-
erability in the quantitative verification community. Converters to and from the
PRISM language exist. The well-established Quantitative Verification Bench-
mark Set (QVBS) [29] contains plenty of JANI models for tool comparisons.
They are used for example in the QComp competition [11,25] comparing quan-
titative verification tools. Based on that, we also contribute a performance com-
parison to other state-of-the-art SMC tools in the evaluation in Sec. 3, inspired
by QComp. To allow for comparison with other established model checkers, we
decided to start with the evaluation of discrete-time Markov chain (DTMC)
models and later extend the functionalities of the implementation.

In the following, we present smc_storm, our SMC tool based on the open
source STORM model checker, including its technical details and the available
configuration parameters (Sec. 2), as well as a benchmarking comparison to
other state-of-the-art SMC engines on the QVBS [29], but also on a model of a
robotic system with realistic handling of geometric behavior and constraints in
an environment (Sec. 3). The smc_storm code is publicly available online 3.

To demonstrate the potential of smc_storm, we compared it to the SMC
tools provided by PRISM and The MODEST Toolset. The supported input
format (no PRISM or JANI), the modeling formalism (timed automata), and
the comparability to other tools (QComp/QVBS) lead to the decision to not
further consider UPPAAL in the experiments of this paper. Nevertheless, it is

3 https://github.com/convince-project/smc_storm
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definitely of interest for future investigations. The same holds for additional tools
that extend existing third-party simulators with SMC capabilities, like Plasma-
Lab [8], that is implemented in Java and supports, among other formats, PRISM.
There is also MultiVeStA [48], implemented in Java, that is designed to verify
agent-based models. Though it would have been interesting to consider those
implementations, we opted for a comparison of tools running the QVBS models
o"-the-shelf in this paper.

The long term goal of this work is to bridge the gap between model checking
and complex robotic applications. This will be achieved by providing a per-
formant verification toolbox useable for complex industrial settings based on
STORM and JANI [33].

2 Functionalities of smc_storm

In this section we introduce the technical details of smc_storm, the SMC tool
we developed on top of the STORM framework. The smc_storm implementa-
tion can be split into two parts: (1) the trace generation engine, starting from
the model exploration engine already present in STORM and (2) the statistical
analysis methods to determine the amount of traces required to compute the
desired results (both with a fixed number of iterations [43] and with sequential
methods [47,15,13], evaluated in each iteration). Additionally, performance im-
provements using parallelization and optimizations are done to make the SMC
engine applicable and useful for developers of complex (autonomous) robotic
systems.

The following sections introduce the structure of the smc_storm implemen-
tation and the input parameters the user can provide.

2.1 Algorithm Structure

The structure of smc_storm has been inherited from the existing exploration
engine in STORM, that already provided tools to evaluate probabilities (P) on
simple path properties. The existing code was extended to support SMC, and
to be able to evaluate reward (E) properties and more complex path properties.
The main steps of the implementation are summarized in Algorithm 1.

The algorithm starts by loading the model and the property, making sure all
provided constants are assigned, the initial state is provided, and traces can be
generated starting from it. Once the model and the task are loaded, an object to
collect the results of the generated samples is prepared (see line 2), and the main
loop of the algorithm is started (see line 5). This loop can be parallelized, with
each iteration being responsible to generate a batch of a fixed number of samples
(see line 7) that are added to the collector at the end of the loop (see line 10).
As soon as the collector contains enough samples to provide the desired result
with enough confidence, the algorithm stops to sample new traces and computes
the result. To prevent possible biases in the result, the collector object ensures
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Algorithm 1 Simplified Flow of smc_storm
1: procedure smc_storm(model, property)
2: Initiate sampling_results
3: for all threads do
4: Initiate expl_model ω Exploration Information
5: while sampling_results.converged() == False do
6: Initiate results_batch
7: while results_batch.not_full() do
8: path_result = generateNewPath(model, property, expl_model)
9: results_batch.add(path_result)

10: sampling_results.add(results_batch)
11: result = sampling_results.calculateResult()

that each thread contributes the same amount of batches by using a bu"er to
synchronize the di"erent threads, as suggested in previous SMC works [12,52].

In the following, we introduce the contributed components that we consider
to be the most relevant for the implementation of smc_storm.

The PropertyDescription class introduced in this work converts an input
path property to a bounded until (condition U[a,b] target) property, generating
a condition expression, a target expression, the lower bound a and the upper
bound b. In addition, a terminal_verified flag indicates whether a path reaching
a terminal state without verifying the target expression should be considered
as verifying the path property or not. This approach allows to unify the path
evaluation part by focusing on a single, consistent interface that remains valid
across all supported path properties.

The existing ExplorationInformation class is meant to store the explored
model in an incremental fashion, in order to reuse previously computed infor-
mation when generating new samples. We extended it to store explored rewards
and explicitly assign the result of the path property evaluation to each expanded
state. The evaluation result consists of any combination of the following flags:
no_info, is_terminal, break_condition, and satisfy_target. With the additional
information the algorithm is capable of evaluating bounded path properties and
computing rewards on the generated samples.

Lastly, the SamplingResults class was introduced to collect the results from
the generated samples, to define when the algorithm generated enough samples
to compute a final result with the requested precision and confidence (detailed
in Sec. 2.2), and to perform the final result calculation. To properly evaluate the
existing samples, this module needs to distinguish between P and E properties.
Additionally, to lower the need for thread synchronization and hence improve
parallelization, each thread collects the computed results in an own BatchResult
object of fixed batch_size, before adding it to the main SamplingResults col-
lector, that will add that result in a BatchBu!er object to ensure each thread
provides the same amount of samples. A higher batch_size reduces the need of
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synchronization between multiple threads, at the expense of potentially produc-
ing more samples than needed.

2.2 Provided Statistical Methods

The crucial point when performing formal verification using SMC, is to evaluate
the statistical relevance of the computed result. In other terms, it needs to be
determined if, given the existing samples, Eq. 1 is satisfied.

Prob(|X → Y | > ω) < (1→ C) (1)

Eq. 1 is used to make sure that the probability that the computed result di"ers
too much from the actual result is low. In the equation, X is the correct result,
Y is the one estimated from the samples, ω is the maximum absolute error, and
C is the minimum confidence level that the error |X → Y | is lower than ω. The
concept of this equation is closely related to the confidence interval (CI) that
determines the interval containing the true result with a given confidence level
on the basis of the amount and nature of the existing samples. ω represents the
desired half width of the CI, and our goal is to converge to a CI whose width is
smaller than 2ω.

In the literature multiple methods exist to determine whether, given a set
of samples, Eq. 1 is satisfied. They can be divided into two main categories: 1)
methods requiring a fixed number of iterations and 2) sequential methods, evalu-
ated at runtime and generally requiring a lower amount of samples. Additionally,
since those methods usually rely on the assumption that the samples stem from
a specific statistical distribution, it is important to distinguish between samples
generated to evaluate a P property and those to evaluate an E property. In the
first case, the result is binary (whether the trace satisfies the property or not),
so we can assume that the results are coming from a binomial distribution. In
the second case, the result is a number (the reward/cost obtained on that trace)
coming from a continuous interval with unknown bounds. Therefore we need
to assume the results are coming from a di"erent distribution, e.g. a normal
distribution.

When using smc_storm, the user can define the desired confidence level
C and maximum error ω of the computed result, together with the statistical
method to use for determining when to stop generating new samples. The com-
plete list of implemented statistical methods can be found in Table 1 together
with their compatibility with P and E properties.

In the following list, we briefly describe the most common statistical methods:

– Cherno! Bounds [14,43]: This method defines the amount of required
samples depending on the provided C and ω, together with the width of the
interval containing the possible outcomes of each sample. For P properties,
the interval width is 1 (i.e., [0, 1]), so the number of required samples can be
determined directly from the start. For E properties the width of the interval
is not known at start, and it needs to be estimated during runtime. This is
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Name ID P Support E Support
Cherno! Bounds cherno! ✁ ✁
Wald Interval wald ✁ ✂
Agresti-Coull Interval agresti ✁ ✂
Wilson Score Interval wilson ✁ ✂
Corrected Wilson Score Interval wilson_corrected ✁ ✂
Clopper-Pearson Interval clopper_pearson ✁ ✂
Arcsine Transformation arcsine ✁ ✂
New Adaptive Sampling Method adaptive ✁ ✂
Chow-Robbins Confidence Interval chow_robbins ✁ ✁

Table 1: Statistical methods available in STORM SMC with their ID and support
for P and E properties.

done by keeping track of the minimum and maximum sampled reward and
increasing the amount of required samples each time the tracked minimum
and maximum values change, assuming the new values are the boundaries
of the interval of all possible outcomes. This method usually results in a
higher number of samples compared to the sequential methods described in
the following.

– Wald Interval [49]: The simplest sequential method designed for P prop-
erties, approximating the binomial distribution to a normal distribution.
Though it keeps the number of required samples low, the result’s error is
often higher than the provided ω, especially in case the expected result is
close to 0 or 1.

– Clopper-Pearson Interval [19]: Another sequential method designed for P
properties, that computes the exact interval from the binomial distribution
and is more accurate than the Wald Interval, though it requires a higher
number of samples.

– New Adaptive Sampling Method [13]: An alternative sequential method
introduced in the context of machine learning, that requires more samples
than the two sequential methods introduced before, but provides more ac-
curate results. Since it assumes sample results coming from a binomial dis-
tribution, it can be used only for P properties. It is the default method used
in modes and smc_storm.

– Chow-Robbins Method [15]: This is a sequential method for samples
drawn from a continuous distribution. It assumes samples are drawn from a
normal distribution and computes the width of the confidence interval based
on the variance and the amount of sampled results. It is the default method
used by PRISM SMC, modes, and smc_storm for evaluating E properties. In
case of P properties, it approximates the binomial distribution to a normal
distribution, resulting into the Wald interval method described above.

From our experience, the statistical methods selected by default provide a
good trade-o" between result accuracy and performance for all the considered
use cases in our evaluation. However, sequential methods might converge to
the wrong results, and cannot provide with any guarantee on the quality of
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the results based on asymptotic behavior. For this reason, if the quality of the
result is more important than the computation time, we recommend to use
the Cherno" Bounds both for P and E properties, that assures the number of
generated samples is high enough to satisfy Eq. 1 for the given C and ω.

2.3 Running smc_storm

Currently, smc_storm is provided in a standalone repository 4 that uses STORM
as an external library. It depends on the o!cial STORM repository 5, that needs
to be installed before compiling smc_storm. smc_storm supports only Linux.

Once installed, smc_storm can be executed from the command line as fol-
lows:

smc_storm
--model <path >
--properties -names <string >
--constants <string >
--epsilon <real >
--confidence <real >
--stat -method <string >
--max -trace -length <int >
--n-threads <int >
--batch -size <int >
--show -statistics

The following list provides the description of the available parameters:

* --model: Path to the file containing the model and properties description
(jani or prism format).

* --properties-names: Comma-separated list of the properties to evaluate.
* --properties-file: File containing the available properties (for prism mod-

els only).
* --constants: Values for constant parameters of the loaded model.
* --epsilon: Maximum absolute error of the computed result, given a certain

confidence level.
* --confidence: The confidence level that the error of the computed result is

below the requested epsilon.
* --stat-method: The statistical method used to determine how many sam-

ples we need to generate. IDs given in Tab. 1.
* --max-trace-length: Maximum length of a single generated trace. Set this

parameter to 0 to make traces unbounded.
* --n-threads: Number of threads to use for the generation of the samples.
* --batch-size: Number of samples a thread generates before adding them

to the main collector.
4 https://github.com/convince-project/smc_storm
5 https://github.com/moves-rwth/storm
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* --show-statistics: Flag to print a report on the statistics (i.e., number
of generated traces, number of satisfying traces, min/max reward) of the
generated samples at the end of the evaluation.

3 Experimental Evaluation

In this section we evaluate the performance of smc_storm against the SMC
implementations in PRISM [35] and modes, the SMC tool from The MODEST
Toolset [7]. In Sec. 3.1 we evaluate the tools using all applicable DTMC models
with their related properties from the QVBS (i.e., we only considered models
with a single initial state providing atomic probability and reward properties).
In addition, we defined a first robotics-related example as explained in Sec. 3.2 to
show how we can make use of smc_storm to formally verify industrially relevant
properties on it. All tests have been performed on a standard laptop running on
Ubuntu 22.04 with an Intel Core i7-11850H CPU and 32GB of RAM.

3.1 Evaluation on Standard DTMC Benchmarks of the QVBS

To demonstrate the capabilities of smc_storm we selected all DTMC models
with their related properties from the QVBS [29] that are compatible with it
(i.e., single initial state, atomic property). The list of models used for this eval-
uation with the IDs shown in the plots, together with the related constants and
properties, can be found in Table 2.

Because of the di"erent statistical methods in use (see Sec. 2.2), we split our
tests in two groups, depending on the property under verification: the first group
consists of all available probability (P) properties and the second one consists
of all available reward (E) properties. Additionally, for smc_storm and modes,
we measure the performance both in single-threaded and multi-threaded mode,
to evaluate the impact of parallelization on the performance of the tools. In the
plots shown in the following, a comparison to PRISM is always provided, though
it doesn’t support multi-threading, and therefore we can compare only to the
results from the single-threaded runs.

All experiments are performed using ω = 0.01 and C = 0.95 from Eq. 1.
Each run evaluates exactly one property of a model. For the multi-threaded
runs of storm_smc and modes, we use five parallel threads and a batch size of
100 samples. All remaining parameters have been left to their default values.
This includes the selection of which statistical method is used to determine
when to stop generating new samples. For P properties, smc_storm and modes
use the New Adaptive Sampling Method from Chen and Xu [13], while PRISM
computes the CI width assuming the generated samples are coming from the
Student’s t-distribution [45]. For E properties, all three tools make use of the
Chow-Robbins Method to evaluate the CI width [15]. It is also worth mentioning
that no tool used rare event simulation strategies during these tests, a feature
currently provided only by modes.
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Model Constants Property Instance id

brp N=64, MAX=5
p1 (P) brp_p1
p2 (P) brp_p2
p4 (P) brp_p4

crowds TotalRuns=6,
CrowdSize=20 positive (P) crowds_p

egl

N=5, L=2

messagesA (E) egl_s_ma
messagesB (E) egl_s_mb
unfairA (P) egl_s_ua
unfairB (P) egl_s_ub

N=5, L=8

messagesA (E) egl_l_ma
messagesB (E) egl_l_mb
unfairA (P) egl_l_ua
unfairB (P) egl_l_ub

leader_sync
N=3, K=2

eventually_elected (P) lead1_e
time (E) lead1_t

N=5, K=4
eventually_elected (P) lead2_e
time (E) lead2_t

nand
N=20, K=1 reliable(P) nand1_r
N=20, K=2 reliable(P) nand2_r
N=40, K=2 reliable(P) nand3_r

oscillators N=6, T=6, R=1,
mu=0.1, ε=1, ϑ=0.1,

time_to_synch (E) osc_t
power_consumption (E) osc_p

haddad-monmege N=20, p=0.7 target(P) hm_targ

Table 2: QVBS models and properties used for the evaluation.

The four metrics we use to compare the di"erent SMC implementations are
the computation time, the number of generated samples needed to converge to
the result, the maximum amount of used memory and the result error. These
metrics are computed for each test instance, consisting of a model, the value
of the constants and the property under evaluation. The complete list of test
instances is provided in Table 2. For each test, we set a timeout of 20 minutes.
When the timeout is reached, we consider the test as skipped.

The results for the multi-threaded tests on P and E properties are summa-
rized in Figure 1 and Figure 2, respectively.

When evaluating P properties, smc_storm is on average 8 times faster than
modes and 14 times faster than PRISM SMC (that does not provide a multi-
threaded mode). The number of generated samples in smc_storm is comparable
to modes and higher than PRISM SMC, which is expectable from the statistical
methods in use. Regarding the error of the computed results, all three tools keep
the error below the requested limit ω for all the tested benchmarks. Looking at
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(a) Runtime relative to smc_storm. (b) Number of generated samples.

(c) Absolute error w.r.t. ground truth. (d) Max. used memory during runtime.

Fig. 1: Performance evaluation of smc_storm, modes, and PRISM SMC (y-axis)
on P properties using multi-threading where available. If no bar is present, the
test was skipped (20 min limit).

the memory usage, smc_storm uses on average double the memory of modes,
but still less than PRISM SMC.

In the case of E properties, smc_storm runs on average 29 times faster than
modes and 97 times faster than PRISM SMC, while generating a comparable
number of samples to both modes and PRISM SMC. This fulfills the expecta-
tions because the same statistical methods are in use. Since for E properties
the algorithm needs to keep the state and action rewards in memory, and there
is a separated copy for each thread, smc_storm needs on average 6 times the
memory used by modes in this case. For what concerns the computed results,
the error of all three tools never exceeds ω.

For a fairer comparison, we also provide the results for the single-threaded
runs of the tools in Figure 3 and Figure 4.

When evaluating P properties, smc_storm is on average 11 times faster than
modes and 12 times faster than PRISM SMC, and uses on average as much
memory as modes, while still using less memory than PRISM SMC. All other
metrics are comparable to the multi-threaded results.
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(a) Runtime relative to smc_storm. (b) Number of generated samples.

(c) Absolute error w.r.t. ground truth. (d) Max. used memory during runtime.

Fig. 2: Performance evaluation of smc_storm, modes, and PRISM SMC (y-axis)
on E properties using multi-threading where available. If no bar is present, the
test was skipped (20 min limit).

For E properties, smc_storm is on average 45 times faster than modes and 61
times faster than PRISM SMC. All other metrics are comparable to the results
obtained for P properties.

According to our evaluation, smc_storm is the fastest SMC available tool
when it comes to evaluating P and E properties without sacrificing accuracy of
the result. The statistical methods in use are comparable to the ones used by
other tools, especially the ones from modes. In the next Discussion paragraph,
we provide some thoughts on the possible reasons for the performance di"erences
observed in the evaluation.

Discussion Overall, the results of the evaluation show that smc_storm is cur-
rently the fastest SMC tool for evaluating both P and E properties on DTMC
models similar to the ones from our evaluation set, without sacrificing accuracy.

The absolute error plots might suggest that smc_storm is more accurate on
P properties and modes is more accurate on E properties. However, this is not
consistent over all test instances, so it is not possible to claim that one tool is
more accurate than the other.
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(a) Runtime relative to smc_storm. (b) Number of generated samples.

(c) Absolute error w.r.t. ground truth. (d) Max. used memory during runtime.

Fig. 3: Performance evaluation of smc_storm, modes, and PRISM SMC (y-axis)
on P properties running in single-threaded mode. If no bar is present, the test
was skipped (20 min limit).

When looking at performance, the first thing to observe is the di"erence be-
tween single-threaded and multi-threaded runs of the tools: smc_storm proved
to be faster in either case, but the performance improvement between single-
and multi-threading in smc_storm is not as significant as for modes, that is able
to get a higher speed-up from multi-threading while keeping its memory usage
relatively constant. The measurements of the memory usage of modes suggest
that the tool keeps a very limited set of information in memory, forcing it to
expand the same states and edges of the model each time a new sample is gener-
ated, as opposed to smc_storm, that stores all the information computed from
the model to avoid recomputing it when the same state is reached. This partic-
ular design choice has multiple implications: the amount of memory smc_storm
uses when verifying models with a very large state space (e.g. in the robotics
example introduced in Sec. 3.2) could be large, and the computation required
to keep the information in memory could also increase with the amount of data.
After a certain point, the gain of keeping information in memory might be out-
weighed by the expense of keeping them up to date. Comparisons between single-
and multi-thread run-times of modes and smc_storm are depicted in Figure 5.
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(a) Runtime relative to smc_storm. (b) Number of generated samples.

(c) Absolute error w.r.t. ground truth. (d) Max. used memory during runtime.

Fig. 4: Performance evaluation of smc_storm, modes, and PRISM SMC (y-axis)
on E properties running in single-threaded mode. If no bar is present, the test
was skipped (20 min limit).

PRISM SMC does not have multi-thread capabilities, but its performance in the
single-threaded runs is comparable to modes, while requiring the largest amount
of memory. The comparison highlights that the smaller tests in smc_storm (i.e.
the ones running in less than a second) often are faster in single-threaded than
in multi-threaded mode. We observed similar results in modes as well. This is
the case when the traces can be computed very quickly and the largest over-
head in the algorithm comes from creating the threads and the synchronization
of the results across them. However, most use cases are large enough to make
multi-threading worth it, and given the usual performance improvement from
multi-threading in smc_storm, we encourage to use it whenever possible. This
is particularly true when evaluating E properties, that require on average a larger
amount of samples to converge to the desired result, making the performance
improvement more significant. Lastly, we observed that the performance increase
resulting from using smc_storm is much higher when evaluating E properties
compared to P properties: this could be explained by the fact that smc_storm
stores the explored rewards in memory, and therefore it has to compute them
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(a) Runtime smc_storm on P prop. (b) Runtime smc_storm on E prop.

(c) Runtime modes on P prop. (d) Runtime modes on E prop.

Fig. 5: Multi- (MT) vs. single-threaded (ST) smc_storm and modes.

only once. However, it is just an hypothesis that requires further investigations
to be confirmed.

The reported results suggest that smc_storm can still be improved when
it comes to multi-threading, especially in terms of memory and synchroniza-
tion e!ciency, to reduce memory usage and, at the same time, get even higher
performance.

3.2 Evaluation on Robotics Example

In addition, we run smc_storm on a first robotic example, modeling the full
robotic deliberation behavior in a realistic environment.

Our current example consists of a mobile robot operating in a 2D environ-
ment. The robot description consists of its shape, that stays constant, and its
2D pose (x and y-coordinates plus its orientation), that changes over time. The
robot’s position also represents the current state of the DTMC model under
investigation. At each transition, the robot can either drive forward or turn on
the spot, with equal probabilities.

In addition, the model describes the environment the robot is acting in. The
environment consists of its boundaries, that are constant and represent, e.g., the
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walls of the room, and of obstacles, that currently can only be stationary, but
we plan to make them dynamically moveable in the future.

The coordinates of the robot and the environment are given using real num-
bers, and the most complex operations in the model are the ones defining the
intersections of the robot’s trajectory with the boundaries and obstacles of the
environment, to determine the robot’s position after driving. Additionally, given
the limitation of STORM not supporting real non-transient variables, we dis-
cretize the state space (i.e., the robot pose) to represent the x- and y-coordinates
in centimeters and the orientation in degrees, such that the state of the model
can be represented using only integers. With that solution, each transition starts
by converting the state back to real numbers (i.e., using meters and radians) and
finishes by converting back to integers. This approach is also useful to prevent
the number of generated states from growing too large.

The described model is completely modeled in JANI, but given the amount
of operations required to express the geometric operations introduced above, we
implemented a new robotics flavored version of JANI, including syntactic sugar
to express geometries, to describe the robot’s properties and the environment,
and to define geometric operators not available in the original JANI definition.
Models written in robotics-JANI can be automatically expanded into original
JANI v.1 with a Python script, that will also be provided open-source, to enable
verification of such models with the model checking tool of choice.

To verify the robotics model including the geometric aspects, we extended
STORM to support some trigonometry operators that, until now, were not sup-
ported. The new operators are already available in the latest version of STORM.

Using smc_storm and modes, we evaluated the robotic model on a simple
property, checking whether the robot eventually reaches a target position in a
fixed number of steps (i.e., 10000 steps). The result calculated by smc_storm
and modes is the same (up to ω), but given the number of states generated
during the evaluation (almost eight million states), the tools showed very specific
behaviors in terms of memory usage and runtime. In particular, smc_storm used
roughly 1GB in single-threaded mode and 3GB when using five threads, while
modes used roughly 80MB in both cases. The runtime of the two tools was
rather comparable, with smc_storm being slightly faster in single-threaded mode
and modes being slightly faster in multi-threaded mode. These observations are
in line with what we saw in the evaluation of the QVBS benchmarks. In the
discussion paragraph above, we already provided some thoughts on the possible
reasons for the behavior, that is largely a"ected by the size of the state space.

In the future we plan to extend the robotics model to verify more complex
functionalities of the robot, with particular focus on the deliberation algorithms
defining its high level behavior in challenging environments. Properties of interest
are for example that the robot eventually finds a way back to its docking station
or that the robot is able to drive away from a very cluttered area in less then a
predefined number of time steps.
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4 Conclusions

We introduced smc_storm, a SMC extension of STORM o"ering diverse statis-
tical methods and evaluated its performance on QVBS benchmarks and a first
robotics example with realistic geometric calculations against other state-of-the-
art statistical model checkers. Already at the current early development stage
smc_storm outperforms other implementations on most of the benchmarks. In
the next development steps further improvements in terms of memory e!ciency
and improved multi-threading mechanisms will be evaluated. In addition, stud-
ies on further real-life industrial use cases from the robotics domain are ongoing.
This will lead to extensions and adaptions of the implementation with the in-
tegration of further algorithmic improvements, e.g., an extension of the SMC
engine towards nondeterministic models like MDPs, or timed models, and the
connection to other modeling languages are considered.

The overarching goal of our work is to bring together existing MC and robotic
tools including modeling languages by an open-source framework which also com-
mercial providers can link their solutions to. For this, STORM with its new SMC
extension provides a stable basis. In this context, we are also working on a feature
extension of the JANI-format to make the expression of robotic functionalities
and environment models more natural and user-friendly. Combining those two
lines of work, the overall goal is a framework to which robotics engineers can link
their solutions to with lightweight adapters and small tools on top of existing
software.
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rope Research & Innovation Program under Grant 101070227 (CONVINCE). We thank
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