
On SMC-Based Dependability Analysis

in LoLiPoP-IoT Project

Josef Strnadel[0000→0001→6327→5990], Jakub Lojda[0000→0002→5745→587X],
Pavel Smr![0000→0002→5638→1362], and Václav "imek[0000→0002→9837→4128]ω

Brno University of Technology, Bozetechova 2, 61200 Brno, Czech Republic
{strnadel|ilojda|simekv|smrz}@fit.vut.cz

https://www.fit.vut.cz/

Abstract. Many systems require certain level of dependability to ful-
fill their purpose in predefined conditions. To check whether such a re-
quirement can be met, the designer of a system must use proper means
to assess dependability qualitatively or quantitatively, whereas this pa-
per focuses on the latter assessment manner. The first problem with
the assessment is that we cannot judge it except by evaluating its sub-
attributes such as reliability, availability or maintainability. The second
problem relates to the assessment itself – ideally, assessment builds on an
analytical solution; however, if it does not exist, its presumptions are vi-
olated etc., an alternative approach must take place. This paper presents
our alternative, simulation based approach with a special attention paid
to reliability and maintainability; it builds on stochastic timed automata,
an instrument able to model a wide class of systems/conditions of one’s
interest. In our approach, the assessment process takes the advantage
of the statistical model checking technique, powerful enough to quantify
dependability attributes in realistic situations and with a predefined de-
gree of uncertainty. Finally, the paper evaluates our approach, outlines
our research perspectives and gives a conclusion.

Keywords: Fault · Failure · Random variable · Dependability · Reli-
ability · Maintainability · Analysis · Quantitative assessment · Model ·
Timed automaton · Simulation · Statistical model checking · Uncertainty

1 Introduction

Motivation&Scope of this Paper. Traditionally, our research focuses on
modeling & analyzing various issues that relate to dependability of systems.

In the modeling field, it focuses especially on issues related to uncertainty
& dynamics of phenomena such as the occurrence time of a fault, time a fault
spends in a system, time it takes to initiate, start or finish a repair mechanism
and time to failure of a service provided by a system.
ω This work was supported by the Chips JU Project LoLiPoP-IoT (Long Life

Power Platforms for Internet of Things), www.lolipop-iot.eu, grant agreement No.
101112286, which is jointly funded by the Chips Joint Undertaking and national
public authorities.

2 Josef Strnadel, Jakub Lojda, Pavel Smr!, and Václav "imek

In the analysis field, it focuses on the assessment of dependability attributes
such as reliability, maintainability or availability and their control using various
approaches to fault tolerance, maintenance etc.

The fact that the kind of modeling/analysis could fail when classical ap-
proaches are applied in uncommon – but still realistic – conditions, motivated
us to show that instruments such as stochastic timed automata and statistical
model checking are able to avoid such a failure. To demonstrate the applicability
of our approach, we used a set of case-studies, each of which can be used as a
design-pattern for solving a particular problem of one’s interest.

LoLiPoP-IoT Project. The project [32] aims to design advanced energy har-
vesting (EH) and micro-power management solutions for long-lasting wireless
sensor network (WSN) devices. This project focuses on solutions that will be
integrated into (or near) monitored equipment and infrastructure, serving as
pivotal technology platforms for data collection. By enabling e#ective and un-
interrupted data collection, detection of potential anomalies, and performance
monitoring, the project enhances the e$ciency and potential of the trillion-
sensor economy projected for 2025. The collected data promises unprecedented
opportunities, potentially saving billions of euros, reducing carbon emissions,
and increasing the usage of renewable energy across various industries.

The LoLiPoP-IoT project covers these important Application Domains, that
comprehend Industry 4.0, Smart Mobility, and e$ciency in energy management.
These include Asset Tracking, Energy E$ciency and Comfort Optimization,
but also, same to the focus of this paper, Condition Monitoring and Predictive
Maintenance.

Condition monitoring and predictive maintenance means a continuous mon-
itoring of equipment and machinery parameters. This allows for the detection of
anomalies indicating developing faults. Predictive maintenance, utilizing Indus-
try 4.0 principles, minimizes maintenance overhead and downtime by enhancing
operational e$ciency and significantly reducing costs. While the LoLiPoP-IoT
project covers all the Application Domains, the ones targeted at condition mon-
itoring and predictive maintenance include:

(i) tracking of air cargo pallets and monitoring their condition,
(ii) supervision of a paint-dying facility,
(iii) surveillance of bearings,
(iv) examination of fermentation processes in agriculture,
(v) optimization of district heating, and
(vi) monitoring a fill level of lightweight vehicles.

The overview of targets of the project in the scope of Condition Monitoring
and Predictive Maintenance is shown in Fig. 1.

The condition monitoring and predictive maintenance in these use cases, aim
to continuously monitor equipment and machinery parameters to detect anoma-
lies indicating potential faults. In the context of dependability and predictive
maintenance, ensuring continuous operation and timely maintenance is essential
for optimizing productivity and preventing costly failures, which in turn ensures
the reliability and availability of critical systems.

On SMC-Based Dependability Analysis in LoLiPoP-IoT Project 3

supervision of
paint-dying facility

surveillance of
vehicle bearings

monitoring tank
contents of vehicles

examination of
fermentation in silos

tracking and monitoring
air cargo pallets

Smart Mobility

optimization of
district heating

Industry 4.0 Energy Saving Smart Agriculture

Fig. 1. Overview of the project targets from the point of view of Condition Monitoring
and Predictive Maintenance

Structure of this Paper. The rest of this paper is organized as follows. Sect. 2
summarizes key preliminaries, including facts such as dependability and its as-
sessment, related work in areas of our interest and means/methods we used in our
approach. Sect. 3 presents our approach to constructing models for the areas of
our interest such as faults, fault-tolerant architectures, repair and maintenance
mechanisms. Sect. 4 summarizes representative results – we have achieved so
far based on the models – to show the applicability of our approach. Sect. 5
concludes the paper and outlines our future research perspectives.

2 Preliminary

2.1 Dependability and Its Assessment

Dependability as a service failure. Qualitativelly, dependability of a system
– often being understood as a provider of a service – can be seen as its ability
to provide a specified service in specified conditions and for a specified period of
time, whereas by “specified” we, ideally, mean “intended”. A deviation between
the specified service and the provided one is called a failure – see Fig. 2.

requirements specification system

servicefailure

Fig. 2. Illustration to the failure of a service

4 Josef Strnadel, Jakub Lojda, Pavel Smr!, and Václav "imek

A deviation between the specified service and the provided one is called a
failure – see Fig. 2. Typically, a failure results from (series of) cause-and-e#ect
elements (such as states, events, actions) and their products – see Fig. 3.

Phenomena Fault Error Failure
action activation propagation

Fig. 3. Typical causal chain resulting into a failure. Initially, a fault is dormant (pas-
sive) – i.e., it is present in a system, but has no impact to its state/behavior; later, it
may get activated, become active and manifest itself by an error (i.e., a deviation from
the intended state). Alike a fault, an error is dormant until it gets activated, i.e., by
using it during a computation; if an error propagates beyond the boundary/interface
of a (sub-)system a#ected by an error, it may propagate through further (sub-)systems
up to the outputs observable by a user, i.e., result into a failure

A failure may have di#erent forms, failure modes, ranked according to the
severity of the failure. For example, DO-178B standard defines the so-called
seriousness classes to express a particular level of severity – see Fig. 4.

Failure e#ects

No e#ect
(level E)

Minor
(level D)

Major
(level C)

Hazardous/
severe-major

(level B)

Catastrophic
(level A)

Fig. 4. Seriousness classes of failures e#ects based on DO-178B

Attributes of dependability. Dependability, seen qualitatively or quantita-
tively, is a complex feature composed of multiple attributes [4,16] – see Fig. 5. Let
us emphasize that we can’t judge it except by evaluating its sub-attributes, each
giving a partial image about dependability; from the quantitative viewpoint, we
can’t evaluate dependability by a single, overall number.

This paper focuses only on the quantitative assessment of dependability. Ide-
ally, the quantitative assessment provides data that in/validates an existing qual-
itative assessment; vice versa, one may derive the qualitative assessment from
an existing quantitative assessment.

The assessment of dependability must be based on precisely defined con-
cepts. Since supposedly identical systems – operating under similar conditions
– fail at di#erent times, associated phenomena can only be expressed stochas-
tically. In some specific cases, such as an exponentially-distributed probability
density function of a time-to-fault random variable, the assessment can be done
on analytical basis [16]. However, in general, an analytical solution need not
exist, so one must use an alternative solution instead, see Sect. 2.2.

On SMC-Based Dependability Analysis in LoLiPoP-IoT Project 5

Dependability

Threats
Faults
Errors
Failures

Attributes

Reliability
Maintainability
Availability
Safety
Integrity

Means

Fault tolerance
Fault avoidance
Fault prevention
Fault forecasting
Fault removal

Fig. 5. Dependability characteristics [4]: threats, attributes and means. Facts of our
interest are highlighted

Quantitative dependability assessment (QDA) problem. To better un-
derstand the QDA problem, let us express it mathematically in the following
text – consult Tab. 1, please. Let XTTF be a continuous random variable used
to represent the time-to-fault (TTF) and fXTTF (t), FXTTF (t) and RXTTF (t)
functions used to represent probability density function (PDF), cumulative dis-
tribution function (CDF) and reliability function (“reliability” in brief) of XTTF ,
resp. Similarly (for repairable systems), we may introduce a continuous random
variable XTTR used to represent the time to repair (TTR), called the repair rate
too. If it is unambiguous, we can omit XTTF and XTTR to make the notation
more readable. Tab. 1 clearly shows an important fact – i.e., that all attributes
of dependability can be derived, e.g., from PDFs. Having them, we are able to
evaluate an attribute using a common calculus.

Fault/repair rates and mean times. A relation between fault and repair
rates is illustrated in Fig. 6. Initially, a system is fault-free. If a fault occurs in
a system, the fault may manifest itself by an error, a consequence of which may
propagate further into the system and result into a failure – see Fig. 3 too.

t

MTTF

ti

MTTR MTTF

ti+1

MTBF

fau
lt-

fre
e

fau
lt i

fau
lt-

fre
e

fau
lt i

+
1

err
or i

(fa
ilu

re i
)

tr

Fig. 6. Illustration to the relation between fault and repair rates and to MTBF

6 Josef Strnadel, Jakub Lojda, Pavel Smr!, and Václav "imek

Table 1. Basic symbols and formulas to assess dependability

Attribute
Symbol Evaluation Meaning
fXTTF (t) identified empirically probability density function,
fXTTR(t) PDF

FXTTF (t)
∫ t

→↑ fXTTF (x) dx cumulative distribution function,
FXTTR(t)

∫ t

→↑ fXTTR(x) dx CDF

RXTTF (t) 1→ FXTTF (t) reliability (survival) function, R
hXTTF (t) fXTTF (t)/RXTTF (t) hazard/failure (rate) function, h

MTTFXTTF

∫↑
0

t↑ fXTTF (t) dt = mean time to failure,
=

∫↑
0

1→ FXTTF (t) dt MTTF

MXTTR(t)
∫ t

0
fXTTR(s) ds maintainability, M

MTTRXTTR

∫↑
0

t↑ fXTTR(t) dt = mean time to repair,
=

∫↑
0

1→ FXTTR(t) dt MTTR

MTBFXTTR
XTTF

MTTFXTTF + mean time between failures,
+ MTTRXTTR MTBF

AXTTR
XTTF

(↓)
limt↓↑ AXTTR

XTTF
(t) = availability

=
MTTFXTTF

MTBF
XTTR
XTTF

(steady-state), A

For a non-repairable system, this is the first and only fault that finishes the
mission/operation of the system; so, MTTF must be, ideally, much bigger than
the expected mission/operation time, guarantee period etc.

A repairable system can recover from a fault (practically, from a given class
only), e.g., by a masking, detection followed by a reconfiguration/repair etc.;
this process, however, takes some time – MTTR in average. Then, the system
(again) becomes fault-free and can operate until a new fault occurs. However, if
a new fault occurs before the repair finishes, the behavior of the system may get
undefined. As A = MTTF

MTBF = MTTF
MTTR+MTTF , it must hold (ideally) MTTR →

MTTF to maximize availability of a system. For fixed MTTF , the value of A
increases with the decreasing value of MTTR; ideally, limMTTR↑0 A = 1, i.e.,
max. if the repair takes no time.

Maintenance analysis and control. A key dependability attribute of our
interest is maintainability, M(t), formally introduced in Tab. 1 (as the probability
that a repair finishes by t > 0, initiated by the occurence of a fault at t=0).
Practically, it a#ects, e.g., the amount of time a system spends in a downtime
state (before it returns back to an uptime state) as well as attributes such as
MTTR, MTTB and thus, availability. It can be controlled by means of various
maintenance policies that can be classified into four classes [10], see Fig. 7.

The simplest policy is corrective (called reactive too) – as it gets apply after
a fault only, a system must enter a downtime state to initiate it. The second one
is condition-based – continuously, it monitors a proper set of states/quantities
to identify the healthy level of a system; the maintenance gets activated only if

On SMC-Based Dependability Analysis in LoLiPoP-IoT Project 7

Maintenance

Predictive
(PdM)

Preventive (PrM) /
Scheduled (ScM)

Condition-
monitoring

based (CmM)

Corrective (CoM) /
Reactive (ReM)

Fig. 7. Basic classification of maintenance policies/paradigms

the system is found in a non-healthy condition, so the policy can prevent from
entering a downtime state. The third policy is preventive (called scheduled too)
– usually, it starts periodically, based on historical failure data, in the hope of
preventing a failure; however, its periodic activity may have negative e#ects. The
last policy is predictive – it tries to predict how much it is likely that a failure
occurs in a predefined interval of time; such a prediction allows a system to make
it ready for recovering from the failure and, ideally, to minimize downtime.

With regard to Fig. 6, let us recall that, ideally, the value of parameters such
as MTTR, MTBF should be minimal or, at least, “As Low As it is Reasonably
Practical” (ALARP). As mentioned in relation to Fig. 7, such an optimization
is very di$cult if a system applies a simple maintenance such as CoM/ReM;
however, one can approach to the optimum if the system uses a properly set
PrM/ScM process or a more complex CmM/PdM process. Each of the main-
tenance approaches has its benefits and costs [27]: CoM/ReM can be easily to
implemented (in an event-driven manner), but it typically leads to an expen-
sive downtime; PrM/ScM can be easily to implemented too (in a time-triggered
manner), but may can – wastefully – replace a fault-free equipment or miss a
failure that have occurred before the start of maintenance; CmM can be rela-
tively low-cost in terms of needed equipment, but may consume a lot of energy
as it intensively uses a computing/communication infrastructure; finally, PdM
can predict a failure before it occurs, and maintenance can be planned and con-
ducted in advance to avoid the failure. The authors of [28,38] identify the three
approaches for making the predictions: model-based (e.g., using rules or physical
models), data-driven (e.g., using machine/deep learning) and hybrid. Although
our approach is hybrid too, we present only its model-based part in this paper.

2.2 Related Work

Tab. 1 shows that to assess dependability, data such as PDF for random variables
such as XTTF and XTTR are needed. Typically, data like that are gathered from
practice, estimated based on previous experience or based on a qualified model
of reality. Then, a particular dependability attribute, such as R, M or A, can be
evaluated. Ideally, the attribute can be identified using an analytical solution,
if it exists and its assumptions are met [16]. For example, such an assumption
may expect that XTTF (alike, XTTR etc.) follow a predefined distribution of
probability. Particularly, for exponentially distributed XTTF and XTTR param-
eterized by ω and µ, resp., the following analytical solution exists – written in

8 Josef Strnadel, Jakub Lojda, Pavel Smr!, and Václav "imek

the simplified notation: f(t) = ωe
→εt, F (t) = 1 ↑ e

→εt, R(t) = e
→εt, h(t) = ω,

MTTF = 1
ε . , M(t) = 1↑ e

→µt, MTTR = 1
µ , A(t) = µ

µ+ε + ε
µ+εe

→(µ+ε)t.

Despite such assumptions comply with a wide range of practical needs, they
may be very limiting and not strong enough to cope easily (or, at all) with
realistic issues such as assessing the reliability of a system across its life time
[7, 24, 26, 35] or “dynamic reliability” [14, 37] trying to cope with facts such as
the transience of faults in a system, stochasticity of a recovery process and
faults introduced into a system before the process is complete. To cope with
factors like that, instruments such as Dynamic Fault Trees, (DFTs), Driven
Boolean Markov Processes (DBMP), or Dynamic Reliability Block Diagrams ex-
ist. (DRBDs). Further instruments extend earlier concepts such as Stochastic
Petri Nets, (SPNs), Stochastic Reward Nets, (SRNs), Stochastic Activity Net-
works, (SANs) or Stochastic Process Algebra. (SPA). But, also instruments like
that su#er from above-mentioned disadvantages, i.e., they require complex pro-
cedures to cope with the “problematic” factors and/or long time for the accurate
dependability assessment [37].

Many alternatives to the analytical solution of the reliability assessment prob-
lem rely on the Monte Carlo simulation [15]. However, they su#er from the long
running time and a need to solve further problems, such as speeding up the
simulation [23], to make the assessment applicable in practice. Authors of [36]
substituted the Monte Carlo approach by a more e$cient stochastic analysis over
a restricted model. Further works, such as [8, 9, 25, 29], build on Markov mod-
els and reward models with stochastic behaviors. They use the model checking
technique [5] from the PRISM tool [19] to quantify a property of a system.

Further approaches, especially in the field of reliability-centered maintenance
(RCM), build on instruments such as Fault Maintenance Trees [1,31] and Fault
trees [33,34] optimize maintenance planning by maintaining critical assets more
intensively than less critical ones in order to well-balance costs and value of main-
tenance. Fault Tree Analysis (FTA) is a popular methodology [33], commonly
used in industry. Traditional FTA is very useful to analyse the reliability of
systems when failure rates are given, typically exponentially-distributed TTF s.
In practice, however, these failure rates are strongly a#ected by maintenance –
as FTs are unable to reflect that, FTA is not suitable to compare the various
maintenance policies. To overcome these limitations and to determine the e#ect
of di#erent maintenance strategies on system reliability and costs, fault mainte-
nance trees (FMTs) have been proposed in [31]; e.g., they introduced the rate
dependency (RDEP) gate to allow the failure of a component to accelerate the
degradation of other components, they allowed one to combine FTs with arbi-
trary probability distributions (of TTF , TTR) and with maintenance models
and they summarized facts needed to model&analyze maintenance: degradation
of components, inspections, and repairs. But even this approach does not include
many realistic facts such as imperfections in the performance of inspection and
maintenance, fluctuation of inspection times and maintenance, non-zero repair
times, transient/intermittent faults and dynamic/temporal redundancy.

On SMC-Based Dependability Analysis in LoLiPoP-IoT Project 9

2.3 Timed Automata and Statistical Model Checking

Timed Automata. Various modeling means have been developed to describe
the behavior of systems [11]. A particular behavior of a system, described by a
computational model (M) can be seen as a (potentially infinite) path through
a digraph GM that corresponds to M . Our paper builds on the timed automata
(TA) formalism [3] that extends non-timed formalisms by temporal aspects. 1,
use moves instead of actions etc. [5, 11] The “classical” definition of TA can
be further extended [17] by further important concepts such as variables, com-
munication channels, stochastic decisions and by the ability to reflect prices
(costs, rewards), to solve di#erential equations [6, 13]. Also, one can use a cer-
tainly known (deterministic, fixed) delay, unknown (non-deterministic) delay or
to combine the approaches. This paper builds on the so-called Stochastic Timed
Automata (STA) as used in the Uppaal SMC toolset [13].

One of the biggest advantages of TA formalism is that it allows one to model
uncertainty due to the variation of parameters in time; such a variation can be
described stochastically by means of TA, e.g., using random variables following
an appropriate distribution of probability. Among the others, TA allows one to
model the variability using the so-called Stop-watch concept (see Fig. 8). In the
figure, a 3-state (sStart, sWait, sEnd) TA is illustrated, whereas t and vDly are
variables of the clock type and fDly() is a function that returns the value of
a predefined random variable, i.e., a (pseudo) random number. The automaton
starts in sStart. During sStart ↓ sWait, x is reset and vDly set to the return
value of fDly(); at this moment, vDly represents a random value. Staying in
sWait cannot take longer than vDly units of time, whereas the time is measured
using x while the progression of vDly is suspended (to capture the target/final
time) by vDly↓ == 0; in other words, time of t passes until it reaches the value of
vDly. Thus, sWait ↓ sEnd is possible just if x matches vDly. Particular TA based
instruments, allows one to generate pseudo random numbers following particular
distributions of probability; typically, some of them are built-in, further ones can
be added by a user. Also, it is possible to choose a fixed delay, choose the delay
non-deterministically or to combine the approaches.

sStart
{pStart}

sWait
t ↔ vDly &&
delay↔ == 0

a)

sEnd
{pEnd}

vDly = fDly(),
t = 0

t ==
vDly

=↗ ω
fDly()

b)

Fig. 8. The way we used to model a block (ω) with a stochastically defined delay: a)
full schema, b) simplified schema for increasing readability

Model Checking. On top of means for M , further means can be used to formal-
ize desired properties (ε) of a system and then to check whether such properties
can imply (|=) from such a behavior, i.e., whether M |= ε. We use a model
checker (MC) to produce such a decision: if M |= ε holds, the checking finishes;

10 Josef Strnadel, Jakub Lojda, Pavel Smr!, and Václav "imek

otherwise, the checker can produce a counter-example (CE), i.e., a sequence of
timed actions leading to the violation of a property – see Fig. 9.

MC checks whether M |= ε;
if M |= ε then it finishes, else it produces a CE.

Computational model M

System description
Modeling

Logic formula ε

System specification
Formalizing

Fig. 9. Classical (“binary”) model checking.

As a “classical” MC technique [5,11] is prone to the state space explosion and
its decision capability is limited and binary (i.e., either M |= ε or M ↔|= ε), one
may use a technique such as statistical model checking (SMC) to overcome dis-
advantages of MC [2,22]. Simply said, SMC conducts simulations over a stochas-
tic model and monitors/processes them statistically to infer, with a predefined
degree of uncertainty (ϑ), whether they provide a statistical evidence for the
satisfaction of a property. SMC replaces the binarity regarding the satisfaction
by the ability to quantify the impact of a change in a system for a predefined
degree of confidence (1 ↑ ϑ). SMC easily scale and has already been applied to
solve various problems [20].

Query Language. For reasoning purposes, viewpoint, the “classical” logic [12]
helps one to check whether a formula ε (ϖ) is true or false for all/some realiza-
tion(s) of logic and evaluation(s) of logic variables, while the so-called temporal
logic, a special kind of the modal logic [5,11], distinguishes between various modes
of truth e.g., necessarily true, known to be true, believed to be true or always
true with respect to the given context (e.g., time). Using a (S)MC, one may
check properties such as reachability, safety, liveness, possibility, invariance, po-
tentiality, eventuality, probability estimation/comparison or hypothesis testing.
To save space, we omit a general overview herein; instead, please consult Sect. 4
to find some queries we used to check key properties of our interest; to express
such properties, quantifiers like ↗, ↘ and operators like !, " or # are typically
used:

– ↗"ε (“Possibly” property) holds if there is a reachable path in GM such that
ε possibly holds on the path,

– ↘!ε (“Invariantly” property) holds if each reachable path in GM satisfies ε;
its equivalent is ¬↗"¬ε,

– ↗!ε (“Potentially always” prop.) holds if exists a reachable path in GM such
that ε always holds on the path,

– ↘"ε (“Eventually” property) holds if ε possibly holds on all paths in GM ;
its equivalent is ¬↗!¬ε,

On SMC-Based Dependability Analysis in LoLiPoP-IoT Project 11

– ε # ϖ (“Leads to” property) holds if whenever ε holds, eventually ϖ holds
too; its equivalent is ↘!(ε ≃ ↗"ϖ),

– ε #↔t ϖ (time-bounded “Leads to” property) holds if ε # ϖ holds in at
most t units of time.

– Pr[limit](ε) (Probability Estimation) estimates the probability of a prop-
erty ε being true given that the predicate limit is true,

– E[limit;nos](expr) (Value Estimation) estimates the value of an expression
expr by running a given number of simulations nos.

In this paper, we focus mainly on quantitative MC based on the probability
estimation query.

3 Proposed Approach

This section introduces key concepts of our approach to QDA. Firstly, Sect.
3.1, outlines key instruments we used to parameterize our model(s) as well as
components of our model(s), each able to express a particular stochastic behavior
such as the arrival of a fault, presence of a fault in a system and the duration of
a reconfiguration process. Next, Sect. 3.2 presents our representative models.

3.1 Means of Parameterization and Expressing Stochastic Behavior

To make our approach highly flexible, we specified a set of parameters used
to parameterize it. Their representatives are listed in the following text (blue
information in brackets by each of them represents the implicit value we used in
our approach):

– NUNITS(3) – # of functional units (modules),
– NSPARES(6) – # spare units,
– SPARE_BASE(NUNITS+0) – index at which a block of spares starts,
– MAX_FAULTS(6000) – max. # of faults,
– MAX_FTYPES(3) – max. # of fault types,
– MAX_FDEFS(12) – max. # of fault definitions,
– MAX_FGDEFS(MAX_UNITS+MAX_SPARES) – # of fault generators,
– MAX_RDEFS(MAX_SPARES) – # of recovery definitions,
– MAX_PDIST(32) – max. # of supported distributions of probability,
– MAX_PATTR(4) – max. # of attributes per a probability distribution etc.

To express a desired stochastic behavior, one must have a set of properly-
selected random variables, each defined by its distribution of probability. Using
a probability distribution (Prob Dist), one can express multiple random variables
such as fault occurrence/presence time (Fault) or reconfiguration time (Reconf).
Each such a variable can be produced by multiple sources (Fault Gen, Rec Ctrl),
each used to produce a predefined event, such as the occurrence of a fault or
the end of a reconfiguration, for a predefined component of a system. In our
approach, we implemented that using instruments outlined in List. 1.1–1.3. Par-
ticularly, List. 1.1 outlines instruments we used to characterize selected distri-
butions of probability, i.e., their types defined by pdist[i] and attributes defined
by pattr[i].

12 Josef Strnadel, Jakub Lojda, Pavel Smr!, and Václav "imek

Listing 1.1. An illustration to the characterization of probability distributions

1 const int PUNI=0, PEXP=1,PNOR=2,PWEI=3,PPOI=4,PBET=5,PGAM=6,PTRI=7,PARC =8;
2 typedef int[0, MAX_PDIST -1] t_pdist;
3 typedef int[0, MAX_PATTR -1] t_pattr;
4 // list of prob. dist. (set their attributes via pattr [])
5 const t_pdist pdist[t_pdist] = { PNOR , PUNI , PNOR , PEXP , ... };
6 // attributes of prob. dist. from pdist[]
7 const double pattr[t_pdist][t_pattr] = {
8 /* scale , attr0 , attr1 , attr2 , ... */
9 {1.0, 3000.0 , 50.0, 0.0}, // attrs of pdist [0]

10 {1.0, 5000.0 , 0.0, 0.0}, // attrs of pdist [1]
11 {1.0, 1000.0 , 10.0, 0.0}, // attrs of pdist [2]
12 {1.0, 0.5, 0.0, 0.0}, // attrs of pdist [3]
13 ... };

List. 1.2 shows a way we use to characterize a fault. Each fault (see t_sfault)
is characterized by its type (ft), time of its occurrence (pttf) and time of its
leaving (pttd). To facilitate the access to the characteristics, we use functions
such as ftype() and pttf() – see lines 16, 17.

Listing 1.2. An illustration to the characterization of faults

1 const int FPERM=0, FTRAN=1, FINTER =2;
2 typedef struct {
3 int ft; // fault type: 0-perm , 1,tran., 2-interm.
4 int pttf; // time -to-fault ID
5 int pttd; // time -to-disappear ID
6 } t_sfault;
7 // a fault is defined by its t_sFault:
8 const t_sFault fdef[] = {
9 {FPERM , 0, 1},// perm.f., pdist[0], pdist [1]

10 {FTRAN , 1, 5},// trans.f., pdist [1], pdist [1]
11 {FTRAN , 2, 6},// trans.f., pdist [2], pdist [0]
12 ... };
13 // a fault generator is defined by an index to fdef
14 const t_nfault fid[] = { 0, 1, 2, 0, 0, ... };
15 // auxiliary functions
16 t_ftype ftype(int gid){ return fdef[fid[gid]].ft; }
17 t_pdist pttf(int gid){return pdist[fdef[fid[gid]]. pttf];}
18 ...

List. 1.3 shows a way we use to characterize a reconfiguration process. Ana-
logically to fdef[], we use rdef[] to characterize the reconfiguration time. Lines
3–8 illustrate instruments (t_spares) we used to characterize a particular recon-
figuration mechanism – a spare. Each module (functional unit) may use a set
of cnt spares, indexed from first. The setup of spares s0, s1, . . . reserved for a
particular module (functional unit) m indexed by i = 0, 1, . . . (i.e., mi) of a sys-
tem is stored in sdef[i]; line 9 shows the setup for a Triple Modular Redundancy
(TMR) with no spares.

Listing 1.3. An illustration to the characterization of reconfiguration by spares

1 // assigns a pdist to a reconfiguration unit
2 const t_pdist rdef[t_nrecon] = { 14, 0, 6, ... };
3 const int SHOT=0, SWARM=1, SCOLD =2;
4 int stype[MAX_SPARES] = { 0, ... };
5 typedef struct {
6 int cnt; // # spares per a unit
7 int first; // offset to SPARE_BASE
8 } t_spares;
9 s_spares sdef[NUNITS] = { {0,0}, {0,0}, {0,0} };

To express stochastic behavior of systems, we extend the instruments from
Sect. 3.1 by means such as ttf(), ttd(), ttr(), i.e., functions that returns a
random number following the probability distribution associated with their pa-
rameter, such as the id of a generator (gid), and id of a reconfiguration (rid),
passed to the function. By means of such extensions and, using the mechanism

On SMC-Based Dependability Analysis in LoLiPoP-IoT Project 13

introduced in Fig. 8, we created models (Fig. 10) able to express stochastic be-
havior of systems we are interested in and representative models (Fig. 11) we
used for the dependability assessment purposes.

ω
fDly(ttf(gid))

c
sFnew

a)
fgen[gid]!
n_fin++ b)

xxx
sInactive

cc)
sNew

c
sType

ω
fDly(ttd(gid))

c

c sFoverxxxsPerm

fgen(gid)?
faultId++,

factive[gid]++

fault(gid)!

ftype(gid)
== FPERM

n_fp++
f_recovery[fid]?

n_fp→→

ftype(gid)
== FTRAN
n_ft++

f_recovery[fid]?

n_ft→→

fault_over(fid)!
factive[gid]→→

xxx
sInactive

ω
fDly(ttr(rid))

c
sRdone

d)

recfg_done[rid]!recfg_start[rid]?

f_recovery[fid]!

Fig. 10. Some of our applications of the mechanism from Fig. 8: a) tool-agnostic and b)
Uppaal-based fault generator/arrival models, c) fault-presence model, c) reconfigura-
tion model. To make our consequent models more readable, we may omit the labeling
function (l) in our further illustrations. Further, to clarify labels, we use Uppaal’s
text-color schema: violet – a place, teal – a synchronization, olive – a select, blue – an
action, green olive – a guard.

Fig. 10a shows our model of a fault generator identified by gid. After a ran-
dom delay, given by ttf(gid) in ϱ, it sends a synchronization via the fgen[gid]

channel; then, it increments the counter of incoming faults and waits until new
fault should occur. Fig. 10b depicts our model of a fault. After a fault gets ac-
tivated via fgen[gid], it moves to sFnew (c in its box denotes that the state is
"committed", i.e., that time does no pass there). Then, it sends a synchroniza-
tion via the fault[gid] channel to interact with models presented in Sect. 3.2
and enters sType. If the fault is permanent, it enters sPerm and waits there until
its recovery is over; else, it enters ϱ and waits there until one of the following
events occur: time given by fDly() expires, fault recovery completes. Then, it
enters sFover, send a synchronization via fault_over[fid] and enters sInactive.
Fig. 10c shows our model of a reconfiguration timing. Initially, the model waits
in sInactive until the reconfiguration gets started. Then, it waits until the re-
configuration completes. Finally, it sends a synchronization via recfg_done[rid]

and f_recovery[fid].

3.2 Means for Constructing Dependability Models

Fig. 11 presents some of models we created for the dependability assessment
purposes. To better understand Fig. 11, let us explain symbols we’ve not intro-

14 Josef Strnadel, Jakub Lojda, Pavel Smr!, and Václav "imek

duced yet: bad – id of a faulty unit, faulty[i] – indicates whether the component
indexed by i is faulty, s_On(i) – indicates whether the spare indexed by i is ac-
tive, isRdy(i) – returns true if i represents an active non-faulty component; else,
it returns false, nOK() – returns # of components i for which isRdy(i) is false,
chkSpare() – returns id of some non-faulty spare if it exists; else, it returns -1.
Typically, attributes of dependability are evaluated for architectures, based on
static/dynamic redundancy, such as Simplex (SPX), Duplex (DPX), Triple Mod-
ular Redundancy (TMR), Triplex with Successive Degradation (TSD), Triplex To
Simplex (TTS), Triplex with 1 Spare (T1S) – for details, refer, e.g., to [30].

Models for QDA over representative architectures. Fig. 11a illustrates
a SPX – it waits in sOK until the only module (indexed by 0) in a system
fails; then, it stores the id of the failed module into bad (we skip to comment
this action w.r.t. further models) and enters sFail. Fig. 11b illustrates a DPX
– it waits in sOK until one of the two modules (indexed by 0, 1) in a system
fails; then, it enters sFail. Fig. 11c illustrates a TMR – it waits in sOK until
one of the three modules (indexed by 0, 1, 2) in a system fails; then, it enters

a) b)

c)
d)

e)

f)

g)

Fig. 11. Examples for clarifying our parameterizable models (a–c particular, d–g gen-
eralized): a) SPX, b) DPX, c) TMR, d) NMR, e) NMRT, f) NSD (VF = 0) and NTS
(VF = 1), h) NMR with spares (NMRS). To increase readability, we use the following
color schema for the background color of a place: – the OK (fault-free) state of a
system, – a fault in a system, – a failure of a system, – a recovery activation.

On SMC-Based Dependability Analysis in LoLiPoP-IoT Project 15

sFault. Here, it waits until one of the remaining two units fails; then, it enters
sFail. Fig. 11d generalizes TMR to model N-modular redundancy (NMR) that
works analogically to Fig. 11c. In sOK, it waits until a non-faulty module (out
of n modules indexed from 0) in a system fails; then, it enters sFault. Out of
there, it moves based on the result of nOK() – if the number of remaining non-
faulty modules is above 1, it enters sOk ; else sFail. Fig. 11e presents our NMR
model sensitive to transient faults (NMRT). Alike Fig. 11d, it originates from
Fig. 11c, but extends it by the possibility of the limited staying of a fault in a
system. Comparing to a permanent fault (that stays in a system until it gets
removed), a transient fault stays in a system for some predefined time (given by
waiting for the synchronization via fault_over) and then, it "disappears". Thus,
the following sequence may happen (# of non-faulty modules exceeds 2): the
model starts in sOk, a module (i) gets faulty, system enters sFault, then sOk. If
it gets synchronized (about i) via fault_over before further module gets faulty,
the faulty module becomes non-faulty and the model moves to sOk. Fig. 11f
generalizes TSD, TTS to N-modular redundancy, NSD and NTS, resp. – the
models di#er in the setup of VF only. The model starts in sOk. Here it waits
until a module gets faulty, then it enters sChk1 – NSD, NTS moves to sFail
if nOK() ⇐ 0 and nOK() ⇐ 1, resp.; else, it starts the reconfiguration of the
faulty module and enters sFault – the minimal amount of non-faulty modules
is 1 (SPX) and 2 (DPX) for NSD and NTS, resp. Here it waits until one of
the following events happen: the reconf. completes (way to sRec, then sOk) or
further non-faulty module fails (way to sChk2). In sChk2, it is decided if there
is enough non-faulty modules. If so, the model moves to sChk1, else it enters
sFail. Fig. 11g illustrates our model of NMR with spares defined by sdef[]. The
model starts in sOk. Here it waits until a module gets faulty, then it enters
sChk1, gets information about the availability of non-faulty spares for a faulty
module and enters sChk2. If a spare is available, the reconfiguration (of a faulty
module to the spare) starts. The model moves to sFault ; here it waits until one of
the following events happen: the reconfiguration completes (way to sSpare, then
sOk) or further non-faulty module fails (way to sChk3). In sChk3, it is decided
if there is enough non-faulty modules in a system. If so, the model moves to
sChk1, else it enters sFail.

Models for QDA focused on M/A – LoLiPoP-IoT specific models. As
mentioned at the end of Sect. 2.1, each approach to maintenance (M) control
has its benefits/pros and costs/contras. For example [27], most PdM solutions
are deployed either in a High-Performance Environment (HPE) such as a cloud,
whereas data a HPE takes at it input are often produced by small sensor devices
such as WSN. Those devices typically interact via a communication infrastruc-
ture – a network –, so the data has to be collected and sent over a network
for further processing. This su#ers from many drawbacks, e.g., (security/privacy
viewpoint) data can be compromised when sent over a network, (latency view-
point) network communication may induce a non-zero or unpredictable latency,
which can be unacceptable for some apps, (availability, A, viewpoint) network

16 Josef Strnadel, Jakub Lojda, Pavel Smr!, and Václav "imek

communication may get unavailable in sparsely populated etc. areas, (energy
viewpoint) a battery-operated device may spend a lot of energy by sending data
to/from a HPE instead of being processed on the device.

Regarding the LoLiPoP-IoT project, QDA solutions are expected to be ap-
plied in a context particular Use Cases (UCs) – in the following text, let us
demonstrate the applicability in the two context: i) an engine operation and
ii) battery operated (WSN, IoT etc.) devices. Firstly, let us briefly introduce the
engine context. Fig. 12 illustrates that, after started, a fault-free engine operates
as intended, normal (NRM), until it starts to produce an ultrasound (US) noise
– this happens, e.g., after about 10 years of running in NRM.

Source: https://intellisoft.io/predictive-maintenance-iot-your-path-to-efficiency/

Fig. 12. Illustration to anomaly detection and maintenance with regard to an engine

In the order of months, the engine may, sequentially, produce vibrations
(VIB) and need high power (HP) – the ability to detect such phenomena al-
lows one to predict the failure much longer before it can occur. Then, the engine
may produce an audible noise (NSE) and start to operate at a high temperature
(HT) few weeks or days before the failure, resp. After it starts to smoke (SMK),
it can fail in minutes. List. 1.4 summarizes the associated definitions.

Listing 1.4. Key definitions we used to build our model of an engine

1 const int N_ENGINE_STATES = 9; // # states of an engine
2 typedef int[0, N_ENGINE_STATES -1] t_eStates;
3 // engine behavior/state time to failure ...
4 const int OFF = 0; // off
5 const int NRM = 1; // normal ... 10 years
6 const int US = 2; // ultrasound ... 10 months
7 const int VIB = 3; // vibrations ... 5 months
8 const int HP = 4; // high power ... 2 months
9 const int NSE = 5; // noise ... 4 weeks

10 const int HT = 6; // high temperature ... 7 days
11 const int SMK = 7; // smoke ... 15 minutes
12 const int FAIL = 8; // failure
13 const int START = OFF; // starting (initial) state of an engine
14 broadcast chan engAct[N_ENGINE_STATES]; // the channel used to signalize an event , a fault etc.
15 int eSt=START; // initial state of on engine

On SMC-Based Dependability Analysis in LoLiPoP-IoT Project 17

We expressed the behavior of an engine using an automaton from Fig. 13a.
The engine starts in sO!. After it gets on, it moves to sNormal ; if an US noise
gets produced there, it moves to sUltrasnd etc. until it reaches sFail. If an anoma-
lous behavior is detected in a state from sUltrasound to sSmoke, the correspond-
ing repair process is initiated (Fig. 13b) – in general, the price/cost (in terms
such as means, time, complexity and observable e#ects) of the process increases
when approaching to sFail. If the repair finishes before a new fault occurs, the
corresponding transition (with rdone?) fires and the model moves to sOK and
then to sNormal. Timing of transitions between the engine states is controlled by
the model from Fig. 13c – the model waits in sWait until there is time (random
variable parameterized, e.g., by definitions from List. 1.4) for the state change.

a) c)

b)

Fig. 13. Our models of a) the operation of an engine, ideal starting of its repair and
c) its state transition process

To illustrate our approach to modeling a maintenance policy (see Fig. 7), we
present skeletons of the models we used to implement its key processes: a) in-
spection and b) repair. The former one is responsible for initiating a maintenance
– it waits in sO! until the maintenance period expires (then, it goes via sRegIns
to start a regular maintenance) or a monitored condition gets satisfied (then, it
goes via sCallR to start an extra-ordinary maintenance). The latter model reacts
to stimuli from the former one; if signalized, it prepares for the repair process
(sPrepare) and then, it starts the corresponding repair.

Below, let us introduce our QDA approach in the context of a battery op-
erated devices, such as WSN/IoT nodes, typically used to communicate via a

a) b)

Fig. 14. Skeletons of our models of a) inspection and b) repair modules

18 Josef Strnadel, Jakub Lojda, Pavel Smr!, and Václav "imek

network to provide a required service. From the viewpoint of such a device/net-
work, one may use various power/operating modes, e.g., Run, Low Power (LP)
and Very Low Power (VLP), to control the consumption of energy in various
situations, e.g., single-node computation, multi-node communication, parame-
ters/state of a battery. Using a proper power management needs a more sophis-
ticated control and more time in general, but implies positive consequences such
as the prolonged mission time (due to a better battery utilization), decrease of
material stress (due to a lower electrical current and heat dissipation), increase
of a battery life (due to a proper control of the charging process) etc. Typically,
such a device uses mechanism such as Dynamic Voltage and Frequency Scaling
(DVFS), Clock Gating (CG) and State Retention of internal logic, I/O (Input-
s/Outputs) and RAM (Random Access Memory). List. 1.5 shows key definitions
we used to create our models of power operated devices.

Listing 1.5. Key definitions we used to describe the power modes of a device and
scaling of the frequency and exe-time

1 const int wRun = 10 /* probability weights (w) of power modes */
2 const int wLP = 70;
3 const int wVLP = 20;
4 int32_t mCnt[N_PWRMODES]; /* power mode transition counter */
5 double pwrtd[N_PWRMODES][N_PWRMODES] = { /* power mode transition delays */
6 // to Run Wait Sleep <- target / source -v
7 { 0, 1, 10 } // from Run
8 { 1, 0, 5 }, // from Low Power (LP)
9 { 25, 20, 0 } // from Very Low Power (VLP)

10 };
11 const double pwrf[N_PWRMODES] = { 100, 25, 1 }; // mode freq. ratio (in %)
12 double tsc() { return 100.0/ pwrf[nattr[id].pm]; } // exe -time scaling factor of a mode

Particularly, it List. 1.5 defines the constants wRun, wLP and wVLP to define
stochasticity of the power/operating mode switching process, pwrtd[] to define
the delay of switching from a source to a target mode, pwrf[] to define the ratio
of maximum operating frequency used in a mode and tsc() to compute how the
execution time scales when a mode is used. Based on the definitions, we created
models (Fig. 15) to express reality of our interest.

Fig. 15a outlines (a skeleton of) our model of a battery operated device.
It starts in sRdy the goal of which is to fetch an operation (to be executed),
scale it by tsc() corresponding to the recent mode (the initial mode is Run)
and consume the corresponding amount of energy (E) at a predefined power
(P) in sWork. The operation itself, e.g., the increment of a value, executes in

a) b)

Fig. 15. Base of our models of a) a battery operated device and b) its power manager

On SMC-Based Dependability Analysis in LoLiPoP-IoT Project 19

op() on the transition sWork↓sPMsyn, along with sending a synchronization to
the power manager to allow it to switch (update) the mode. Then, it moves to
sUpd. From there, it goes to sRdy if there is enough energy and the predefined
goal, e.g., finishing a computation, based on the operation has not been reached
yet. Otherwise, if the goal is reached, it enters sEnd or, if the energy is low,
it moves to sO! to minimize the consumption of energy; then, it waits for
the next command. Fig. 15b illustrates (a skeleton of) our model of the power
manager of a battery operated device. It starts in sRdy and waits there until
gets synchronized by its device. Then, it moves to sPmSel to select the next
mode and moves to sApply. Out of there, it goes via sUpd if the target mode
di#ers from the source mode (in such a situation, it takes some time to switch);
otherwise, no switch is needed as the source mode is the target one.

4 Evaluation

This section summarizes representative results to show the kind of results achiev-
able by our QDA approach and also, it briefly evaluates it. As mentioned before
(Sect. 2.3), we used Uppaal both to create our models (Sect. 3) using TA, and
to analyze them using SMC. Let us recall that at its input, the Uppaal takes a
model and a query about a property of the model to be checked; at its output,
it produces data such as PDF, CDF or mean w.r.t. the property, whereas the
data quality is driven by parameters such as the probability uncertainty (ϑ),
configurable by a user before the checking starts. Particularly, a query may ask
the SMC engine to evaluate the probability of entering sFail (see Fig. 11). Such
a query is of the probability estimation type and its form is Pr[bound](ς), where
bound defines how to bound simulation steps/runs and ς represents a property
to be checked; e.g., for a model M to be examined within 105 units of time, the
query would be Pr[<= 100000](<> M .sFail).

Initial validation. Firstly, we validated our QDA approach by comparing its
results with results of existing analytical solutions to the QDA problem – Fig. 16
shows such a comparison for SPX and an exponentially distributed XTTF .

t
Fig. 16. An illustration to the validation of our results versus the analytical solution
for SPX and XTTF distributed exponentially with ϑ = 0.5

20 Josef Strnadel, Jakub Lojda, Pavel Smr!, and Václav "imek

Until reaching cca 95% confidentiality level, simulation results were compara-
ble to the results of analytical solutions. For higher levels, results got less accurate
due to a need to simulate rare-event scenarios. However, we may conclude that
our approach is able to produce su$ciently accurate results in a reasonable time.

QDA results for selected kinds of redundancy. Secondly, we evaluated the
Pr[<= 25000](<> M .sFail) query for models from Fig. 11. Apparently (Fig.
17), results of our approach aim to decide, in given conditions, which of the mod-
eled redundancy-based architectures is best from the dependability viewpoint –
apparently, in Fig. 17, the "winner" is NMRS with its biggest MTBF ⇒ 3100.

Fig. 17. PDF examples for the failure event in representative systems, in the same
conditions (see Sect. 3.1); SPX is included for an interest only – it does not involve
any means of dependability control.

Repair rate impact study. Thirdly, we show (Fig. 18) that, for a given archi-
tecture and conditions, our approach aims one do decide what reconfiguration
process is the most suitable for achieving the desired level of maintainability,
availability etc. Fig. 18 compares e#ects of three reconfiguration processes, out
of which the best one is c), characterized by the shortest TTR and consequently,
the biggest MTBF, uptime etc.

a) b) c)

Fig. 18. Ilustration of an impact of various repair rates (RR) to dependability at-
tributes of a NSD system for RRs characterized by the a) normal/Gaussian PDF w.
attr. 15000, 2500, b) uniform PDF w. attr. 1000, c) Beta PDF w. attr. 0.1, 0.1.

On SMC-Based Dependability Analysis in LoLiPoP-IoT Project 21

Engine failures. Regarding Fig. 13, we checked the probability of entering a
particular faulty state of an engine – for representative results, see Fig. 19. This
kind of an experimental result may help one to identify MTTF for particular
faults and consequently, to adjust properly corresponding repair mechanisms in
order to set a ALARP (As Low As Reasonably Practical) value of MTTR and
consequently, maximize MTBF, uptime etc.

a) b)

Fig. 19. Probabiblity density function (PDF) of a) producing an ultrasound, i.e.,
Pr[<=2500] (<>eSt==US), and b) a failure, i.e., Pr[<=2500] (<>eSt==FAIL); time is
in 103 hours (kHrs), whereas a week ↘ 0.1 kHrs, a month ↘ 5 kHrs, a year ↘ 11 kHrs

Battery operated devices. Regarding Fig. 15, we show our approach can be
used to analyze e#ects of using various power-management scenarios – Fig. 20
gives an example of a WSN/IoT node used to perform a task upon a request, i.e.,
to gradually increment its state variable from 0 (initial state) to 16 (goal/target
state) by 1 each 10 units of time (ideally, this finishes at 160). Depending on the
power-manag. policy used, various modes can be used (red line) until the task
completes – based on Fig. 15, the three supported modes are Run (lowest level),
LP (middle level), VLP (highest level); then the mode switches to VLP.

Apparently, it takes the longest/shortest time to finish the task in a)/c),
resp.; the magenta line marks the goal state to be reached and the green line
shows the evolution of the state variable in time. However, RBE (Remaining
Battery Energy) remains the highest after finishing the task in c), probably due
to the mode-switching costs, which is more apparent in a) than in b).

a) b) c)

Fig. 20. E#ects of using various power management scenarios: a) power-optimized:
wRun = 10, wLP = 75, wVLP = 15, b) power-aware: wRun = 40, wLP = 60, wVLP
= 0, c) hi-performance: wRun = 100, wLP = wVLP = 0; for details, consult Fig. 15

22 Josef Strnadel, Jakub Lojda, Pavel Smr!, and Václav "imek

Scalability analysis. Finally, we evaluated (Fig. 21) the impact of the prob-
ability uncertainty (ϑ), e.g., to the process of checking the Pr[<= 25000](<>

M .sFail) query for models from Fig. 11. Fig. 21a,c, shows cca linear dependency
while Fig. 21b shows (over-)linear dependency. We may conclude that our QDA
approach based on TA/SMC scales well for all scenarios we studied. In general,
however, it might get worse in some specific scenarios and must be solved specif-
ically, e.g. using importance sampling and splitting [18,21] used for dealing with
rare event situations.

a) b) c)

Fig. 21. Impact of ϖ to the following parameters of our QDA approach: a) time to
execute simulation runs, b) mem. consumption, c) # of simul. runs

5 Conclusion

In the paper, we have outlined our simulation-based approach to the quantita-
tive dependability assessment (QDA) problem in the context of the LoLiPoP-IoT
project. Our approach builds on the two instruments – firstly, on Stochastic/Hy-
brid Timed Automata (TA) we used to model reality of our interest; secondly,
on Statistical Model Checking (SMC) to evaluate properties of modeled reality
in specified conditions.

Paper summary. At its beginning, the paper introduces its context, i.e., the
LoLiPoP-IoT project, summarizes key preliminaries, including facts such as de-
pendability and its assessment, with a special attention paid to its qualitative
(QDA) form, related work in the areas of our interest and the means/methods
we used in our approach. Then, the paper presents our approach to constructing
models for reality of our interest such as faults, redundancy-based architectures
(e.g., duplex, triplex), repair and maintenance mechanisms (e.g., corrective/re-
active, condition-monitoring based, preventive/scheduled) w./w.o. degradation,
spares etc. Next, it demonstrates the applicability of our approach in the two
particular contexts – an engine operation and battery operated (WSN, IoT etc.)
devices. Finally, the paper summarizes representative results we’ve achieved so
far based on the models to show the applicability of our QDA approach. Among
the others, the results help one to decide what kind of redundancy, repair and

On SMC-Based Dependability Analysis in LoLiPoP-IoT Project 23

maintenance policy are the most appropriate for predefined conditions and ap-
plication in order to maximize availability of a system’s service etc., whereas
e$ciency and accuracy of our approach are controllable by parameters such as
the probability uncertainty (ϑ).

Research perspectives. Among the others, our research plans include prob-
lematic aspects such as the quantitative assessment under dependencies among
faults, dynamics and state-dependent behavior of faults, bathtub-shaped failure
rates – reflecting phenomena such as failure hump, technology or stress –, main-
tenance optimization and planning, optimization of power/energy management
and consumption and of battery life and, finally, applications.

References

1. Abate, A., Budde, C.E., Cauchi, N., van Harmelen, A., Hoque, K.A., Stoelinga,
M.: Modelling Smart Buildings Using Fault Maintenance Trees. In: Bakhshi, R.,
Ballarini, P., Barbot, B., Castel-Taleb, H., Remke, A. (eds.) Computer Performance
Engineering. pp. 110–125. Springer International Publishing, Cham (2018)

2. Agha, G., Palmskog, K.: A Survey of Statistical Model Checking. ACM Trans-
actions on Modeling and Computer Simulation (TOMACS) 28(1), 6:1–6:39 (Jan
2018). https://doi.org/10.1145/3158668

3. Alur, R., Dill, D.: The Theory of Timed Automata. In: Real-Time: Theory in Prac-
tice. pp. 45–73. Springer, Berlin, Heidelberg (1992). https://doi.org/10.1016/0304-
3975(94)90010-8

4. Avi!ienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic Concepts and Tax-
onomy of Dependable and Secure Computing. IEEE Transactions on Dependable
and Secure Computing 1(1), 11–33 (2004). https://doi.org/10.1109/TDSC.2004.2

5. Baier, C., Katoen, J.P.: Principles of Model Checking. Representation and Mind,
MIT Press (2008)

6. Behrmann, G., David, A., Larsen, K.: A Tutorial on UPPAAL. In: Bernardo, M.,
Corradini, F. (eds.) Formal Methods for the Design of Real-Time Systems, Lecture
Notes in Computer Science, vol. 3185, pp. 200–236. Springer Berlin Heidelberg
(2004). https://doi.org/10.1007/978-3-540-30080-9_7

7. Bowles, J.B.: Commentary - Caution: Constant Failure-Rate Models May be Haz-
ardous to Your Design. IEEE Transactions on Reliability 51(3), 375–377 (Sept
2002). https://doi.org/10.1109/TR.2002.801850

8. Calinescu, R., Ghezzi, C., Johnson, K., Pezz, M., Rafiq, Y., Tamburrelli, G.: Formal
Verification With Confidence Intervals to Establish Quality of Service Properties of
Software Systems. IEEE Transactions on Reliability 65(1), 107–125 (March 2016).
https://doi.org/10.1109/TR.2015.2452931

9. Calinescu, R., Ghezzi, C., Johnson, K., Pezze, M., Rafiq, Y., Tamburrelli, G.: For-
mal Verification With Confidence Intervals to Establish Quality of Service Proper-
ties of Software Systems. IEEE Transactions on Reliability PP(99), 1–19 (2015).
https://doi.org/10.1109/TR.2015.2452931

10. Cinar, Z.M., Nuhu, A.A., Zeeshan, Q., Korhan, O., Asmael, M.B.A., Safaei, B.:
Machine Learning in Predictive Maintenance towards Sustainable Smart Manu-
facturing in Industry 4.0. Sustainability (2020), https://api.semanticscholar.
org/CorpusID:225160331

24 Josef Strnadel, Jakub Lojda, Pavel Smr!, and Václav "imek

11. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R.: Handbook of Model
Checking. Springer International Publishing, Cham, 1st edn. (2018).
https://doi.org/10.1007/978-3-319-10575-8

12. van Dalen, D.: Logic and Structure. Universitext, Springer Verlag, London, 5th
edn. (2013). https://doi.org/10.1007/978-1-4471-4558-5

13. David, A., Larsen, K., Legay, A., Miku$ionis, M., Poulsen, D.: Uppaal SMC Tuto-
rial. Int. Journal on Software Tools for Technology Transfer 17(4), 397–415 (2015).
https://doi.org/10.1007/s10009-014-0361-y

14. Devooght, J.: Dynamic Reliability. Advances in Nuclear Science and Technology
25, 215–278 (1997). https://doi.org/10.1007/0-306-47812-9_7

15. Durga Rao, K., Gopika, V., Sanyasi Rao, V., Kushwaha, H., Verma, A., Srividya,
A.: Dynamic Fault Tree Analysis using Monte Carlo Simulation in Probabilis-
tic Safety Assessment. Reliability Engineering and System Safety 94(4), 872–883
(2009). https://doi.org/10.1016/j.ress.2008.09.007

16. Ge#roy, J.C., Motet, G.: Design of Dependable Computing Systems. Kluwer Aca-
demic Publishers, Hingham, MA, USA (2002)

17. Hartmanns, A., Hermanns, H.: In the Quantitative Automata
ZOO. Science of Computer Programming 112, 3–23 (2015).
https://doi.org/10.1016/j.scico.2015.08.009

18. Jégourel, C., Larsen, K.G., Legay, A., Mikucionis, M., Poulsen, D.B., Sed-
wards, S.: Importance Sampling for Stochastic Timed Automata. In: Fränzle,
M., Kapur, D., Zhan, N. (eds.) SETTA. LNCS, vol. 9984, pp. 163–178 (2016).
https://doi.org/10.1007/978-3-319-47677-3_11

19. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: Probabilistic Model Check-
ing for Performance and Reliability Analysis. SIGMETRICS Perform. Eval. Rev.
36(4), 40–45 (Mar 2009). https://doi.org/10.1145/1530873.1530882

20. Larsen, K.G., Legay, A.: Statistical Model Checking Past, Present, and Fu-
ture. In: Margaria, T., Ste#en, B. (eds.) Leveraging Applications of For-
mal Methods, Verification and Validation. Specialized Techniques and Appli-
cations. pp. 135–142. Springer Berlin Heidelberg, Berlin, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45231-8_10

21. Larsen, K., Legay, A., Miku$ionis, M., Poulsen, D.: Importance Splitting in Uppaal.
In: Proc. 11th International Symposium on Leveraging Applications of Formal
Methods, Verification and Validation (ISoLA). pp. 433–447. LNCS, Physica-Verlag
(2022). https://doi.org/10.1007/978-3-031-19759-8_26

22. Legay, A., Delahaye, B., Bensalem, S.: Statistical Model Checking: An Overview.
In: Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G., Ro%u,
G., Sokolsky, O., Tillmann, N. (eds.) Runtime Verification. pp. 122–135. Springer,
Berlin (2010). https://doi.org/10.1007/978-3-642-16612-9_11

23. Liu, Y., Ren, Y., Liu, L., Li, Z.: A Spark-Based Parallel Sim-
ulation Approach for Repairable System. vol. 2016-April (2016).
https://doi.org/10.1109/RAMS.2016.7447965

24. Lu, Y., Miller, A.A., Ho#mann, R., Johnson, C.W.: Towards the Automated Ver-
ification of Weibull Distributions for System Failure Rates, pp. 81–96. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-45943-1_6

25. Lu, Y., Peng, Z., Miller, A.A., Zhao, T., Johnson, C.W.: How Reliable is Satel-
lite Navigation for Aviation? Checking Availability Properties with Probabilis-
tic Verification. Reliability Engineering & System Safety 144, 95 – 116 (2015).
https://doi.org/10.1016/j.ress.2015.07.020

On SMC-Based Dependability Analysis in LoLiPoP-IoT Project 25

26. Nekoukhou, V., Bidram, H.: A New Generalization of the Weibull-
Geometric Distribution with Bathtub Failure Rate. Communica-
tions in Statistics - Theory and Methods 46(9), 4296–4310 (2017).
https://doi.org/10.1080/03610926.2015.1081949

27. Njor, E., Madsen, J., Fafoutis, X.: A Primer for tinyML Predictive Mainte-
nance: Input and Model Optimisation. In: Artificial Intelligence Applications
and Innovations. pp. 67–78. Springer International Publishing, Cham (2022).
https://doi.org/10.1007/978-3-031-08337-2_6

28. Paolanti, M., Romeo, L., Felicetti, A., Mancini, A., Frontoni, E., Lon-
carski, J.: Machine Learning approach for Predictive Maintenance in In-
dustry 4.0. In: 14th IEEE/ASME International Conference on Mecha-
tronic and Embedded Systems and Applications (MESA). pp. 1–6 (2018).
https://doi.org/10.1109/MESA.2018.8449150

29. Peng, Z., Lu, Y., Miller, A., Johnson, C., Zhao, T.: A Probabilistic Model Checking
Approach to Analysing Reliability, Availability, and Maintainability of a Single
Satellite System. In: Modelling Symposium (EMS), 2013 European. pp. 611–616
(Nov 2013). https://doi.org/10.1109/EMS.2013.102

30. Ricky W., B., Sally C., J.: Techniques for Modeling the Reliability of Fault-Tolerant
Systems With the Markov State-Space Approach. Tech. rep. (1995), http:
//shemesh.larc.nasa.gov/fm/papers/Butler-RP-1348-Techniques-Model_
Rel-FT.pdf

31. Ruijters, E., Guck, D., Drolenga, P., Stoelinga, M.: Fault Maintenance Trees:
Reliability Centered Maintenance via Statistical Model Checking. In: 2016
Annual Reliability and Maintainability Symposium (RAMS). pp. 1–6 (2016).
https://doi.org/10.1109/RAMS.2016.7447986

32. Smrz, P., et al.: LoLiPoP IoT (Long Life Power Platforms for Internet of Things),
Part B for Grant Agreement (June 2023). https://doi.org/10.3030/101112286,
https://www.lolipop-iot.eu/

33. Vesely, W.E., Goldberg, F.F., Roberts, N.H., Haasl, D.F.: Fault Tree
Handbook. NUREG, Washington, US (1981), https://archive.org/details/
nureg-0492-ml100780465/NUREG-0492_ML100780465/, id: NUREG-0492

34. Xing, L., Amari, S.V.: Fault Tree Analysis, pp. 595–620. Springer London, London
(2008). https://doi.org/10.1007/978-1-84800-131-2_38

35. Zhang, T., Dwight, R., El-Akruti, K.: On a Weibull Related Distribution Model
with Decreasing, Increasing and Upside-Down Bathtub-Shaped Failure Rate. In:
2013 Proceedings Annual Reliability and Maintainability Symposium (RAMS).
pp. 1–6 (Jan 2013). https://doi.org/10.1109/RAMS.2013.6517749

36. Zhu, P., Han, J., Liu, L., Lombardi, F.: Reliability Evaluation of Phased-Mission
Systems Using Stochastic Computation. IEEE Transactions on Reliability 65(3),
1612–1623 (2016). https://doi.org/10.1109/TR.2016.2570565

37. Zhu, P., Han, J., Liu, L., Zuo, M.: A Stochastic Approach for the Analysis of Fault
Trees with Priority and Gates. IEEE Transactions on Reliability 63(2), 480–494
(2014). https://doi.org/10.1109/TR.2014.2313796

38. Zhu, T., Ran, Y., Zhou, X., Wen, Y.: A Survey of Predictive Maintenance: Sys-
tems, Purposes and Approaches. arXiv e-prints arXiv:1912.07383 (Dec 2019).
https://doi.org/10.48550/arXiv.1912.07383

