
Statistical Model Checking of python Agent-based
models: an integration of MultiVeStA and Mesa

Andrea Vandin1,2[0000�0002�2606�7241]

1 Sant’Anna School of Advanced Studies Pisa, Italy
2 DTU Technical University of Denmark, Denmark

andrea.vandin@santannapisa.it

Abstract. Agent-based models (ABM) consist of several heterogeneous
agents interacting in a complex way, possibly mediated by spatial con-
straints or other aspects, giving rise to emergent behavior not directly
expressed in the model itself. These aspects made ABMs widespread in
several areas, including the social sciences. These models are typically
too complex to be solved analytically, requiring to use simulation-based
analyses. Often, especially in the social sciences, these simulation-based
analyses are not automatic, and the number of performed simulations
or simulation steps might be arbitrary. This might lead to replicability
issues, to low statistical accuracy of the results, or just to wrong results.
In computer science, simulation-based analyses can be automated, e.g.,
using statistical model checking. We present an integration of the statis-
tical model checker MultiVeStA with Mesa, a python-based framework
for modeling and analysing ABMs. We validate the integration by us-
ing two seminal ABMs from the social sciences. We analyze the famous
Boids flock model, able to generate flocking behaviors of birds, with the
transient and counterfactual analysis capabilities of MultiVeStA. We an-
alyze the well-known Schelling model, able to generate social segregation
behaviors, with the steady-state and ergodicity diagnostics capabilities
of MultiVeStA. The contribution of this paper is not methodological.
Rather, this is on the one hand a case study paper presenting an appli-
cation of MultiVeStA. On the other hand, it is a step towards automating
and making more reliable the simulation-based analysis of models written
in the popular Mesa framework.

Keywords: Statistical Model Checking · Agent-based model · Multi-
VeStA · Mesa · Transient analysis · Steady-state analysis

1 Introduction

Agent-based Models (ABMs) are characterized by complex interactions of rela-
tively simple heterogeneous agents, leading to emergent behaviors that are not
explicitly defined within the model. The use of ABMs has spurred in several
disciplines like, e.g., ecology [37], health care [30], geography [15], and medicine
[6]. ABMs are becoming more and more popular also in the social sciences (see,

2 Andrea Vandin

e.g., [56, 50, 71, 27, 59, 31, 33, 29]), where they serve as a pivotal tool for analyzing
by simulation phenomena that are too intricate to be addressed analytically.

The simulation of ABMs involves the iterative execution of each agent’s step.
Depending on the analysis of interest, the design of the simulation experiments
might play a crucial role in the reliability of the obtained results [67]. Moreover,
the analyses, especially in the social sciences, lack automation, which can result
in issues in replicability, statistical inaccuracy, or erroneous results [67, 14, 76].

Statistical model checking (SMC) is a family of simulation-based analysis
techniques from computer science which aims at automating simulation experi-
ments, freeing the modeler from the burden of designing simulation experiments
and testing the reliability of the obtained results [47, 2]. So-called black-box SMC
does not make any assumption on the model under analysis, except that it can
be simulated probabilistically [68, 81], making it general and easily applicable to
existing simulation models. MultiVeStA [66, 35, 76] is a black-box SMC tool that
can be easily integrated with existing simulation models. MultiVeStA has been
recently redesigned and extended to target ABMs from the social sciences, and
in particular from economics [76]. It has been shown that it can automate and
speed up analyses of interest in the community, and avoid erroneous analysis
spurring from wrong designs of simulation experiments [76]

In computer science, several frameworks and formalisms have been proposed
to model and analyze ABMs (see, e.g., [60, 72, 62, 61, 38, 40, 43, 39, 55, 13, 54]).
However, ABM models from the social sciences are still typically written from
scratch using general-purpose programming languages like Java [17], or C [28].
Some ABM frameworks have emerged over the years in the social sciences, like,
e.g., Netlogo [79], LSD [73], jasmine [64], or Mesa [41]. In this paper, we present
an integration of MultiVeStA with Mesa, a Python-based framework for ABM
modeling and analysis popular in the social sciences [41]. This makes Multi-
VeStA and SMC available for analyzing all models available in the Mesa model
repository. These include popular ABM models from the social sciences like
the Boids flocks model [63], which studies flocks behaviors of birds, and the
Schelling model [65] which studies phenomena of social segregation of minority
groups. We validate our integration using these two seminal ABMs from the
social sciences. We employ MultiVeStA’s transient (what is the expected value of

a property at given steps?) and counterfactual (does a reparameterization have

significant behavioral impacts?) analysis capabilities to study the Boids model,
and its steady-state (what is the expected value of a property at equilibrium?)
and ergodicity diagnostics (does the system actually have one equilibrium?) ca-
pabilities to analyze the Schelling model. Our work automates the analysis of
ABMs written in Mesa, providing insights into the emergent behaviors result-
ing from the interactions of their agents. By leveraging the statistical model
checking techniques, we offer a robust framework for researchers to explore and
understand the dynamics of ABMs in social sciences.

Notably, the scope of this paper is neither that of discussing the peculiarities
of ABMs, nor whether they could be modeled with the very popular and pow-
erful tools from the formal verification community (e.g. [44, 26, 24, 11]). Rather,

SMC of python ABMs: an integration of MultiVeStA and Mesa 3

starting from the fact that a wide research community creates and uses ABMs,
and that Mesa is gaining popularity in this area, this paper proposes improve-
ments to the analysis of ABMs written in Mesa. Nevertheless, this can be seen
as a further contribution from the formal verification community to the ABM
one. On the one hand, this is a case study paper presenting an application of
MultiVeStA’s extensions from [76] to different domains. On the other hand,
this paper represents a step towards automating and making more reliable the
simulation-based analysis of ABM Mesa models.

Synopsis. The paper is structured as follows: Section 2 introduces SMC and
MultiVeStA, Section 3 introduces Mesa, while Section 4 discusses their inte-
gration. Sections 5 and 6 present the Boids flocks model and the Schelling one,
respectively, and their analyses with MultiVeStA. Section 7 concludes the paper.

2 Statistical Model Checking and MultiVeStA

We overview statistical model checking techniques available in MultiVeStA.

2.1 Overview

Statistical model checking (SMC) entails conducting a sufficient number of prob-
abilistic simulations of a model, each of a sufficient number of simulation steps,
to derive statistically-reliable estimations of its properties [47, 2]. Black-box SMC
is a variant of SMC where no assumption is made regarding the studied model,
except that it supports probabilistic simulations [68, 81]. This has the drawback
of making more difficult the use of advanced techniques, like, e.g., those to han-
dle rare events [48] or those based on machine learning to reduce the number
of simulations [12]. On the other hand, this makes black-box SMC very general
and virtually applicable to any simulation model.

Here we consider MultiVeStA [66, 35, 76], a statistical analyzer that can be
tool-chained with existing simulators, enriching them with black-box SMC ca-
pabilities. The tool-chaining only regards basic functionalities supported by any
discrete-event simulator. In particular, MultiVeStA only needs to be instructed
on how to reset the simulator before running a new simulation; perform one step

of simulation; evaluate an observation in the current simulation state. This al-
lowed to integrate MultiVeStA with many simulators on several domains, includ-
ing crowd steering scenarios [58], public transportation systems [36, 21], lending
pools in decentralized finance [7], highly-configurable systems [9, 74], business
process modeling [23], security threat modeling [8, 19], adaptive robotic sys-
tems [10, 16], and collective adaptive systems in general [34].

Originally [66], MultiVeStA supported only transient properties (evaluated
at given points in time or upon a given condition), like the expected value of
the number of people who successfully escaped a critical situation within 10
minutes [58]. Later [35], it has been extended with limited support for steady-
state properties, like the expected concentration of chemical species on the long
run [35]. More recently, MultiVeStA has been extended and redesigned to target

4 Andrea Vandin

(a) Transient analysis (b) Steady-state analysis by Replication and Deletion (RD)

(c) Steady-state analysis by Batch Means (BM) using one long simulation
Fig. 1: Representation of transient and steady-state analysis in MultiVeStA.

agent-based models (ABM) from the social sciences, and in particular economic
ABMs [76, 75]. In this redesign, transient analysis capabilities have been ex-
tended with counterfactual analysis, crucial in economic ABMs to study whether
a change in the parameters (e.g., higher taxation) leads to results significantly
different from a statistical point of view (e.g., higher GDP) [76]. However, the
emphasis of the extension has been on steady-state analysis, of particular inter-
est for the community. MultiVeStA now features two complementary algorithms
for steady-state analysis which extend and combine ideas from state-of-the-art
approaches [69, 35, 70], as well as a methodology for ergodicity diagnostics which
can inform the modeler on whether the model allows for steady-state analysis.
Replicating the material from [76] is out of the scope of this paper. However,
in the rest of this section we try to convey the intuition behind the proposals
in [76]. Finally, in a different line of research [18–20], MultiVeStA has been in-
tegrated with process-oriented data science techniques (process mining [1]) to
validate and debug models by graphically representing the behavior that led to
given SMC results.

2.2 Transient and Steady-state analysis in MultiVeStA

We informally introduce MultiVeStA’s algorithms for transient and steady-state
analysis, while we refer to [76] for a more formal and detailed presentation. We
can think of the output of a simulation model as a discrete-time3 stochastic
3 To simplify presentation, we focus on discrete-time simulation models. However,

with mild modifications the algorithms can be adapted to the continuous-time case.
Essentially, in that case the focus moves from simulation steps to simulated time.

SMC of python ABMs: an integration of MultiVeStA and Mesa 5

process (Yt)t>0 describing the evolution over (simulated) time of a number of
variables of interest (e.g., the number of people who successfully escaped a critical
situation at time –or step– t, or a 1-0 value denoting whether an event happened
or not at time t). For the sake of presentation, let us assume that (Yt)t>0

contains only one variable of interest (Yt)t>0. Figure 1(a) depicts n independent
simulations of a model (one per row), each containing the realization of Yt in
each step t = 1, . . . ,m (one per column). Considering simulation i, i.e., row i,
its outcome can be represented as a sequence of observations (or realizations)
yi,t 2 R. Clearly, the observations within the same row i are not independent,
while those in the same column t are independent and identically distributed
(IID). On these simulations, we can study two types of properties:

– The red text in Figure 1(a) exemplifies the analysis of a transient property

evaluated at the specific time point 2: E[Y2];
– The red text in Figures 1(b)-(c) exemplifies the analysis of a steady-state

property evaluated when the system is at equilibrium: E[Y]=limt!1 E[Yt].

The algorithm for transient analysis in Figure 1(a) to compute a statistical
estimate Y 2 of E[Y2] is simple: it performs n simulations, collects from each the
realization of a property (yi,2), and computes their mean. Figure 1(b) depicts an
algorithm for steady-state analysis known as Replication and Deletion (RD) [46].
It is similar to the previous one, with an additional pre-processing shown in gray
in Figure 1(b) to compute the horizontal mean Y i(w) of each simulation i. Such
means are all IID because they come from IID simulations, therefore, as shown
in red, we can treat them like the observations yi,2 in the transient analysis,
computing their vertical mean Y (w). The horizontal means are not computed
on all observations: the initial w ones are discarded. This is the so-called warmup

period which contains bias due to the initial conditions. It must be identified and
discarded to avoid potentially important errors (see, e.g., Section 6 of [76]). This
is a crucial problem, which can hinder a fully automatic analysis of steady-state
properties. In [76], we provided and related to the literature a fully automated al-
gorithm, autoRD, which applies involved statistical tests to identify such warmup
period, and then performs RD on long-enough simulation steps after its end.
Figure 1(c) depicts a complementary algorithm for steady-state analysis based
on the notion of Batch Means (BM) [22, 45, 5]. Differently from RD, which per-
forms many short simulations, BM performs one long simulation. Such long run
is evenly divided into batches (adjacent non-overlapping subsamples), and the
means within each batch, i.e., the batch means Bj in Figure 1(c), are computed.
Intuitively, if the studied process satisfies certain statistical properties, and if
the simulation run is long enough, each batch mean can be used similarly to an
horizontal mean in RD. In [76] we provided and related to the literature a fully
automated algorithm, autoBM, based on BM.

2.3 Confidence intervals and counterfactual analysis

Figures 1 (a)-(c) depict how to compute statistical estimates for E[Y2] (i.e., Y 2)
and E[Y] (i.e., Y (w), and B(l)). We enrich such estimates with appropriate

6 Andrea Vandin

measures of uncertainty, ↵-� confidence intervals (CI). Given two parameters
↵ 2 (0, 1) and � 2 R+, we guarantee with statistical confidence (1 � ↵) · 100%
that the expected value belongs to the interval of width � centered at its estimate.
This is based on standard statistical techniques supported by the law of large
numbers (see, e.g., Chapter 9 of [46]). Intuitively, one just needs to increase the
number of considered simulations based on the sample variance of the estimates.

A common exercise when analysing simulation models in the social sciences
is counterfactual analysis (see, e.g., [67]). This builds on transient analysis, and
consists in comparing the estimates from different model parameterizations to
study whether the obtained results differ significantly from a statistical point
of view. To answer this, MultiVeStA performs the Welch’s t-test of equality of
the means [77] or the u-test [51] on the pair of estimations of every step t of
interest. Among the tools that support statistical model checking we mention
here PRISM [44]. PRISM offers a so-called “experiment functionality” 4 which
allows to run analyses for different predefined parameters and store the results
in CSV files. However, to the best of our knowledge, no counterfactual analysis
based on statistical tests is then offered for the obtained results.

2.4 Ergodicity diagnostics

The RD and BM approaches are complementary [4, 78, 42]. In both cases, a
steady-state analysis is meaningful only “around” a statistical equilibrium, re-
quiring that limt!1 E[Yt] actually exists and is finite. Therefore, not all prop-
erties can be studied at steady-state. In [76], we presented a methodology based
on autoRD and autoBM for ergodicity diagnostics. It assesses whether assump-
tions necessary for steady-state analysis are clearly violated when analysing a
given property on a given model. Our methodology can help in understanding
whether the modeler should instead consider a transient analysis for the con-
sidered property. It is important to stress that it does not make sense to talk
about steady-state analysis or ergodicity diagnostics for a model. Rather, these
considerations shall be done for a property evaluated on a model. In fact, given
a model, certain properties may allow or not for steady-state analysis. Consider,
for example, steady-state analyses of actual values (e.g., the GDP of a country)
and of their increment rates (e.g., the increment rate of the GDP of a country). If
the increment rates eventually reach an equilibrium, then steady-state analyses
of increment rates are likely possible, while steady-state analyses of the actual
values will not be possible because the actual raw value will keep increasing.

Our methodology can be summarized as:

– Run both autoRD and autoBM on the considered property. If one fails, or if the
results differ significantly (i.e., are further away than the � of the CI from
Section 2.3 used for the analysis), a violation has been observed;

– Otherwise, check whether the horizontal means of autoRD pass a normality
test. If this is not the case, a violation has been observed;

– No violation observed otherwise.
4 https://www.prismmodelchecker.org/manual/RunningPRISM/Experiments

SMC of python ABMs: an integration of MultiVeStA and Mesa 7

Model

Model
Parameters

Model Methods

Scheduler Space

Agent

Model

Model
Parameters

Model Methods

Scheduler Space

Agent

“New” SMC Integration
Methods

Method
Simulation Wrapper

MultiVeStA

Integration methods
reset, next, eval

MultiVeStA-Python
wrapper

MultiVeStA

Fig. 2: Simplified structure of a Mesa model (left, adapted from [41]), and its
extension to support the integration with MultiVeStA (right).

3 The agent-based modeling framework Mesa

An agent-based model (ABM) consists of several heterogeneous agents interact-
ing in a complex way, possibly mediated by interaction constraints, giving rise
to emergent behavior. For example, in a macroeconomic ABM we can have thou-
sands of households, firms, and banks which interact (working and buying goods,
producing goods and paying salaries, lending money, respectively), generating as
emergent behavior an economy on which one can estimate macroeconomics indi-
cators like GDP, without them being directly encoded in the model [17]. These
models are typically too complex to be solved analytically, requiring to resort
to simulation-based analyses. In studies conducted in the social sciences, these
simulation-based analyses may be not automated, possibly leading to issues re-
lated to replicability of results, to low statistical accuracy, or to wrong results
(see, e.g., [76, 67]). Simulating an ABM means iterating through each agent, ev-
ery time in a different order, to trigger single steps of execution of each. An ABM
simulation can be seen as a form of discrete-event simulation (DES) [46].

Often, ABMs from the social sciences are written directly in general-purpose
programming languages (see, e.g., [17, 32, 28]). Nevertheless, several frameworks
supporting ABM modeling and analysis in the social sciences emerged over the
years, like, e.g., Netlogo [79], LSD [73], jasmine [64], or Mesa [41]. Here, we con-
sider Mesa (https://mesa.readthedocs.io/en/stable/), a popular python-based
framework for ABMs. Mesa has a modular architecture [41]; Figure 2 (left) de-
picts the minimal components required to create a model in Mesa, by extending
base classes from the library. These include a Model class, which stores param-
eters and agents, and triggers their execution; Agent classes that define agent
characteristics; a Scheduler that governs agent activation patterns and manages
temporal aspects; and a Space class modeling the space where agents interact [41].

8 Andrea Vandin

4 Integration of Mesa with MultiVeStA

The integration of Mesa with MultiVeStA required us to extend the archi-
tecture of Mesa as shown in Figure 2 (right), making it straightforward to
integrate Mesa models with MultiVeStA, enriching them with SMC capabil-
ities.5 Given a Mesa model, the modeler needs to implement a new method
set_simulator_for_new_simulation in the class Model. This will be invoked by
MultiVeStA to reset the model before every new simulation, also providing the
random seed to be used in the simulation. Typically, the modeler has to move
here part of the code from the Model constructor, leaving there only code that
can be executed only once and not before every simulation. For example, code
to create or reset the Scheduler, which is responsible for controlling when the
agents are executed, shall be moved in the new method. Furthermore, the mod-
eler typically also needs to move here code to destroy and create agents (or to
reset agents and space if agents are not recreated after each simulation). Lastly,
the modeler needs to implement a method eval which evaluates quantitative ob-
servations on the current simulation state. Figure 2 (right) shows that the new
methods are responsible for instructing the Scheduler and setting the Space.

Listing 1 shows a snippet of the famous Boids flocks model [63]. We consider
it in Section 5. Integrating the model with MultiVeStA required only minor
changes, including adding the required methods. Changes are localized in the
class BoidFlockers, which extends the class Model. We can see that the invocation
of method make_agents has been moved to set_simulator_for_new_simulation.
Also, eval supports two observations (discussed in Section 5). The class for
agents did not require any change, and therefore it is not shown.

5 Transient analysis of the Boids flocker model

We now demonstrate the integration of MultiVeStA and Mesa using a case
study from the Mesa model library [52]. In particular, we use the Boids flocker
model [63] mentioned in Section 4, focusing on transient analysis.

5.1 Model description

This is an ABM model where agents are birds,6 while the emergent behavior
regards the formation of flocks. The model was created by Craig Reynolds [63],
and later encoded in several frameworks, including Mesa7. By encoding just a
few simple rules for the behavior of birds, the model generates sophisticated and
realistic flocks behaviors. The agents move in a 2-dimensional continuous space.
That is, space is not abstracted in discrete structures (grids or similar), and the
5 Instructions and replicability material the Mesa models used in this paper is available

at https://github.com/andrea-vandin/MultiVeStA/wiki/Integration-with-Mesa
6 Actually, unspecified flocking animals named boids, therefore the name of the model

https://www.red3d.com/cwr/boids/
7 https://github.com/projectmesa/mesa-examples/tree/main/examples/boid_flockers

SMC of python ABMs: an integration of MultiVeStA and Mesa 9

1 class BoidFlockers(mesa.Model):
2 def __init__(self , parameters):
3 self.parameters = parameters
4 #part of model initialization moved to set_simulator_for_new_simulation
5 #self.make_agents ()
6
7 def make_agents(self):
8 ...
9

10 def step(self): #Method already implemented , no need to change
11 self.schedule.step()
12
13 #Code below is specific for integration with MultiVeStA
14
15 def set_simulator_for_new_simulation(self ,rnd_seed):
16 random.seed(rnd_seed)
17 self.random.seed(rnd_seed)
18 self.reset_randomizer(rnd_seed)
19 #part of model initialization moved here from the constructor
20 self.make_agents ()
21 ...
22
23 def eval(self , obs):
24 if obs == ’avg_distance_from_centroid ’:
25 ...
26 elif obs == ’avg_visible_neighbors ’:
27 ...

Listing 1: Code snippet of Mesa’s Boids flockers integrated with MultiVeStA

height at which birds fly is ignored. The model includes a number of parameters.
We consider a 100⇥100 space with 100 birds that move at speed 2 (at each step,
perform movements of 2 units of space). Birds have a vision radius of 10 (the
radius within which each bird perceives neighboring birds), and separation 1
(birds within radius 1 are considered to be too close).

Each bird interacts with the others according to three simple rules: Rule 1

(Cohesion), Rule 2 (Separation) and Rule 3 (Alignment) described in [57]. The
execution of each rule gives a direction (i.e., a 2-dimensional vector) towards
which performing the next move. The actual direction is computed by combining
these three vectors via a weighted sum, where weights are three model parameters
0.03, 0.015, and 0.05, for Cohesion, Separation, and Alignment, respectively.
The actual movement is computed by multiplying the resulting direction by the
speed of the bird. Rule 1 steers birds towards the center of mass (or centroid,
i.e., the average position) of the perceived neighbors; Rule 2 steers birds away
from birds within the separation threshold; Rule 3 forces birds to match the
(average) direction of the perceived neighbors. For all parameters, we use the
values as given in the model.

A simulation step of the model, triggered by method step in Listing 1, consists
in iterating all agents to apply the three rules and perform a movement. In each
step, birds are iterated with a different randomly generated ordering. Figure 3
shows three snapshots of a simulation with these parameters as provided by the
GUI of Mesa. Figure 3 (left) shows an initial step where birds are randomly
placed in the space. Agents with less than two neighbors are red, while the

10 Andrea Vandin

Fig. 3: Two snapshots from Mesa GUI for a simulation of the Boids model.

others are green. Figure 3 (center) shows the state after 100 steps, containing
three larger flocks (bottom, center, center-right). Figure 3 (right) shows that the
three larger flocks are still present after 105 steps, and they have slightly moved.

The Mesa repository contains several files inherent to this model, e.g., graphi-
cal components. We only need to use the core one containing the model specifica-
tion (model.py). The changes to this file have been briefly discussed in Section 4.

5.2 State observations and Predator

We use MultiVeStA to estimate properties on flock behaviors. In particular, in
the eval function sketched in Listing 1 we encoded two observations to study
aspects of the flocks. Observation avg_distance_from_centroid goes through each
agent, computes the distance of the agent from the average of position of its
neighbors, and then returns the average of this distance for all agents. This gives
us an indication about how ‘compact’ is the flock perceived by each bird. Instead,
observation avg_visible_neighbors computes the average number of neighbors
perceived by each agent. A low value denotes a scenario where birds are scattered,
possibly in several small flocks, while a high value denotes a scenario where most
of the birds belong to few (possibly one) large flocks.

Inspired by [25], we also include the presence of predators. That is, at a given
point in time, a predator appears causing the birds to disperse. As suggested
in [57], when the predator event happens, we change the sign of the weight of
the Cohesion vector (Rule 1). This should cause the flocks to scatter. After some
time, the effect of the predator disappears, i.e., we reset the sign of the weight.
We modified method step in Listing 1 such that the predator arrives at step 200,
and its effect disappears at step 400. After executing these two steps, we iterate
trough all birds flipping the sign of the considered weight.

5.3 Analysis settings

We conducted an experiment using the described parameters. We use Multi-
VeStA to study the expected value of the two observations from Section 5.2

SMC of python ABMs: an integration of MultiVeStA and Mesa 11

1 ObsAtStep(step ,obs) =
2 if (s.rval("steps") == step)
3 then s.rval(obs)
4 else next(ObsAtStep(step ,obs)) fi ;
5 eval parametric(E[ObsAtStep(x,"avg_distance_from_centroid")],

E[MyProperty(x,"avg_visible_neighbors")],x,1 ,5 ,601) ;

Listing 2: MultiQuaTEx query for the Boids flocker model

in every fifth step from 1 to 601 (1, 6, . . .). We have set 600 as time horizon
to have three periods of same length (200 steps) without and with the effect
of the predator. We instructed MultiVeStA in doing so by using the Multi-
QuaTEx [66] query in Listing 2. MultiQuaTEx [66] is a practitioner-oriented
query language, or quantitative logic, to express quantitative temporal formu-
las. See [3] for a discussion on the relation among the transient fragments of
MultiQuaTEx, CSL, and PCTL. Lines 1-4 specify a recursive temporal operator

ObsAtStep(step,obs), while line 5 specifies that the steps to consider are all from
1 to 601, with increment 5 (120 steps of interest overall). Instead, the two ob-
servations obs to be studied in these steps are avg_distance_from_centroid and
avg_visible_neighbors discussed in Section 5.2. Line 5 instructs MultiVeStA to
evaluate the expected value of several instances of the temporal operator. The
temporal operator will be unrolled for each of the 120 steps of interest and for
the two observations, (ObsAtStep(1,obs), . . . , ObsAtStep(601,obs)), leading to
240 independent estimations. Each instance will undergo the shown recursive
if-then-else computation: whenever the simulation is in the corresponding step,
s.rval(obs) will trigger the execution of method eval in Listing 1, otherwise the
next in line 4 will trigger the execution of one step of simulation (method next),
and the operator will be re-evaluated in the obtained simulation state.

We ask MultiVeStA to estimate each of these 240 expected values with 95%
confidence intervals (CIs) of width at most 1. At the same time, we impose a
maximum number of simulations (600). MultiVeStA will keep performing rounds
of 30 simulations, each time evaluating the estimates and CIs. As soon as the
CI of an estimate gets smaller than 1, it is not considered anymore. MultiVeStA
completes its analysis as soon as all estimates reach the required CI width,
or upon performing 600 simulations (possibly returning a CIs larger than 1).
Clearly, each of the 240 estimations might require a different number of simula-
tions, and in some cases 600 simulations might not be enough to bound the CI
width to 1. The choice of setting � = 1 and maximum number of simulations 600
has been made arbitrarily for the sake of presentation. In practice, this could
be tuned as follow: one could impose a smaller �, no limit on the number of
simulations, and ask MultiVeStA to produce CSV files with estimations and CI
widths computed after every round of 30 simulations. Then, one could either
wait for all 240 estimations to reach the required CI width, or terminate the
analysis when the latter round or simulations gave satisfactory CI widths.

We also conducted a second experiment where we increased the Coherence
factor (the weight of Rule 1) from the default value of 0.03 to 0.09.

12 Andrea Vandin

Fig. 4: MultiVeStA results for Listing 2. The predator arrives at step 200, and its
effect ends at step 400. Left: results, number of simulations, and sample variance
for the default cohesion weight 0.03. Right: same as for cohesion weight 0.09.

5.4 Results

The results of both experiments are shown in Figure 4.

Default parameterization. We start discussing the results for default parameters
in Figure 4 (left). We start considering the red lines, connected to the neighbors
counts. The top plot shows the estimated and corresponding confidence intervals
computed for each of the 120 estimations. The middle plot shows that obtaining
these CIs required a variable number of simulations: 600 at step 601, 570 at step
201 (right after the predator event). Otherwise, much fewer simulations were
necessary, with a tendency of growing at the growing of the estimated value.
From the bottom plot we can see that the sample variance follows a similar

SMC of python ABMs: an integration of MultiVeStA and Mesa 13

trend. Indeed, as discussed, the higher the variance, the higher has to be the
number of simulations to bound the CI width.

We now move to the blue lines, connected to the distance from the center of
the neighbors. The top plot shows that the estimates are more stable over time
than for the other property. In particular, we note a decreasing trend in the time
frames when there is no effect of the predator, and a more stable trend under
the effect of the predator. The lower variability of this property is confirmed by
the middle and bottom plots.

By combining the information from the two properties, we can give the follow-
ing interpretation on the flock behavior: in the initial states of each simulation,
where agents are randomly placed in the space, birds can perceive on average 4
neighbors, that is, birds might be scattered in several small flocks. While apply-
ing the three rules, the number of perceived neighbors grows to about 17 until
the predator comes. At the same time, the average distance from the centers of
the perceived neighbors decreases, even if slowly. This means that birds tend to
group in fewer, larger, and more compact flocks. The arrival of the predator has
a strong impact on the dynamics. The flip of sign of the coherence factor leads
birds to isolate, going back to a number of perceived neighbors similar to the
one of birds randomly distributed in the space. Also, birds tend to be further
away from the (few) neighbors. As soon as the effect of the predator disappears,
the flocking behavior resumes, going up to 25 neighbors on average.

Higher coherence factor. We discuss the results for coherence factor 0.09 in
Figure 4 (right). The top plot shows a much stronger flocking behaviors, leading
to 45 neighbors on average on step 200, about 3 times those in Figure 4 (left-top).
Similarly, the impact of the predator is stronger. By looking at Figure 4 (right-
middle) and Figure 4 (right-bottom), we confirm the higher variability of this
property than in Figure 4 (left). Actually, we can see that in many steps it has
been necessary to run all admitted 600 simulations. Somehow surprisingly, the
reparameterization does not seem to have an impact on the dynamics of property
avg_distance_from_centroid. In fact, the blue lines in Figure 4 (right-top) are
similar to the ones in Figure 4 (left-top).

Figure 5 zooms in of the widths of the obtained CIs. We can see that for
the default parameterization we always satisfy the constraint on the CI width
within 600 simulations. Instead, this was not the case for avg_visible_neighbors
in Figure 4 (right), where 600 simulations lead to CIs of width up to 2.6.

Counterfactual analysis. We discussed how the change in parameters led to
clear changes in the dynamics of avg_visible_neighbors. Instead, it is not clear
if there has been a significant impact on avg_distance_from_centroid. We can
formally answer this question by using the counterfactual analysis capabilities
of MultiVeStA discussed in Section 2.3. For this property, we run a t-test for
each considered step to check whether the results obtained for the two parame-
terizations are significantly different from a statistical point of view. The results
are shown in Figure 6. We can see that the higher coherence factor did not have
an impact in about half of the steps, the 1-dots at the beginning and the end.

14 Andrea Vandin

Fig. 5: CI widths for the estimations in Figure 4. Left: results for the default
cohesion weight 0.03. Right: same as left for cohesion weight 0.09.

Fig. 6: Counterfactual analysis: T-test for each considered step for
avg_distance_from_centroid from the analyses in Figure 4 (top).

Instead, the central steps (from about 75 to about 200) have been more consid-
erably affected. Indeed, e.g., in such points the blue lines in Figure 4 (top-right)
seem to be more stable than the ones in Figure 4 (top-left).

6 Steady-state analysis of Schelling segregation model

We now consider another classic ABM model from the Mesa model library, the
Schelling model [65], focusing on steady-state analysis.

6.1 Model description and state observations

The second model used to evaluate the integration of Mesa with MultiVeStA
is the famous Schelling segregation model [65]. As for the Boids model, it has
been encoded in several frameworks, including Mesa8. It considers two groups
of people (agents), red and blue, representing two groups of similar individuals.
8 https://github.com/projectmesa/mesa-examples/tree/main/examples/schelling

SMC of python ABMs: an integration of MultiVeStA and Mesa 15

Fig. 7: Two snapshots from Mesa GUI for a simulation of the Schelling model.

The red agents are the majority group, while the blue ones are the minority one.
The model is famous for its emergent behavior of segregation: it shows how a
modest preference for residing close to neighbors of the same group can result
in the minority group being segregated in a few areas [65].

Space is abstracted in a square matrix, with people living in cell locations (at
most one agent per cell). Agents are happy if at least a certain number (by default
3) of the 8 neighboring positions contain people of their group. The dynamics
of the model only regards unhappy agents that keep picking a random empty
cell until happy (agents start moving again if changes in the neighborhood make
them unhappy). If the system runs for long enough, the model stabilizes showing
areas with communities of same group, de facto segregating the minority one. A
number of parameters can be tweaked to modify the behavior of the agents:

– The width and height of the Space in which agents will interact;
– Homophily, i.e., the tendency of individuals to connect with others who share

similar characteristics or attributes. It is the minimum number of neighbors
of same color required by an agent to be happy;

– The density factor, dictating the number of agents in the system. It is the
probability of adding an agent in each position during initialization;

– The minority percentage, representing the percentage of agents that belong
to the minority group. When an agent is created, it is assigned to the minority
group with this probability.

We use default values as available in the model: we consider a 20 ⇥ 20 matrix
with density 0.8, minority percentage 0.2, and homophily 3.

Figure 7 gives a graphical representation of the model using Mesa’s GUI.
Figure 7 (left) shows an initial configuration of where agents are randomly scat-
tered in the space. We note how about 20% of the cells are empty, as dictated
by density, and how about 20% of the agents are blue, as dictated by minority
percentage. Figure 7 (right) shows a state obtained after about 900 steps of sim-
ulation. We can already see partial effects of segregation: the minority group has
gathered in 4 areas.

16 Andrea Vandin

Similarly to the Boids case, the Mesa models repository contains several files
inherent to this model, but we only had to focus on the core file containing the
model specification (model.py). In this file, we had to do only minor changes like
those discussed for Boids in Section 4. We only had to modify the class Schelling
which extends Model by moving part of the initialization code in the new method
to reset the simulator, and by adding the method eval. In the latter, we encode
a simple observation ratioHappy which computes the ratio of happy agents. To
this evaluation, we also add a mild white noise (we add a value sampled from a
standard normal distribution). This does not affect the estimated value (as we
use mean 0), and has the benefit of making our steady-state algorithms more
robust to cases of convergence to deterministic fixed points.

1 Obs(obs) = s.rval(obs);
2 eval autoRD(E[Obs("ratioHappy")]);
3
4 Obs(obs) = s.rval(obs);
5 eval autoBM(E[Obs("ratioHappy")]);

Listing 3: MultiQuaTEx queries for the Schelling model

6.2 Analysis settings and results

Our goal is to confirm that the model, and in particular the ratio of happy
agents, stabilizes over time. We do this using the steady-state analysis capabil-
ities of MultiVeStA presented in Section 2.2. We use the MultiQuaTEx queries
in Listing 3, evaluated with a 95% CI with width at most 0.1. For the first
query, MultiVeStA runs autoRD with default hyperparameters from [76] (e.g., for
estimating the warmpup period we use 128 batches, with initial batch size of
8, meaning that the first check for termination of the warmup period is after
128*8=1024 steps). We find that the warmup period is terminated after the first
check. MultiVeStA then starts performing rounds of 30 simulations, evaluating
for each the average value of ratioHappy in the steps 1025-2048 (the horizontal
means for time horizon 2048 discarding the warmup period). It turns out that
30 simulations are enough to get an estimate (0.98) with CI of accepted width.

By running autoBM, we obtain similar results: warmup is estimated to end
after 1024 steps. Then, the single simulation continues to compute the estimate.
The algorithm autoBM performs 1024 steps more on the simulation, getting to
step 2048. Here, the CI was still too large (0.13). The algorithm then performed
2048 steps more, i.e., it doubled the time horizon getting to 4096 steps. We got
an estimate of 1.02 with CI of accepted width.

We now check whether our methodology for ergodicity diagnostics (see Sec-
tion 2.4) identifies violations on the assumptions required for steady-state anal-
ysis. Both algorithms terminate, and the two estimates are 0.04 away, which is
less than the imposed CI width (0.1). Therefore, the first to checks do not signal
any violation. The horizontal means computed by autoRD pass the normality test
required in the second check of our methodology. In conclusion, our ergodicity
diagnostics methodology does not signal violations, therefore we do not have
reason to suspect that the performed steady-state analyses were unreliable.

SMC of python ABMs: an integration of MultiVeStA and Mesa 17

7 Conclusions

Agent-based modeling (ABM) is a powerful modeling paradigm to obtain com-
plex emergent behaviors from simple interactions of many heterogeneous agents.
Analyzing ABMs requires designing complex simulation experiments. In com-
puter science, statistical model checking (SMC) is a popular family of auto-
mated analysis techniques for simulation models. We presented an integration
of Mesa, an ABM framework popular in the social sciences, with MultiVeStA, a
statistical model checker that can be integrated with existing simulators without
requiring the modelers to encode their models in third-party frameworks or lan-
guages. The integration enhanced the analysis capabilities of Mesa models with
SMC, automating part of the analyses of interest making them more reliable. We
demonstrated the integration using two seminal ABMs, the Boids flocks model
and the Schelling segregation model.

We identify a number of possible future directions: MultiVeStA has been re-
cently extended with process-oriented data science techniques, process mining, to
explain graphically and intuitively the results computed with SMC [18]. We plan
to extend these results to successfully apply them to Mesa models, helping Mesa
modelers in debugging, fixing and refining their models. Another issue regards
steady-state analysis. Often, models from the social sciences do not have just
one equilibria, a steady-state, but possibly multiple ones. We will investigate the
development of techniques to identify and estimate multiple equilibria of ABM
models. It might also be interesting to relate the presented tool-chaining with
existing ones involving SMC and other formalisms targeted to analyse emer-
gent behavior (e.g. [53, 49]). Finally, we will consider improving the integration
mechanisms of MultiVeStA with simulators using advanced patterns for service-
oriented applications [80].

Acknowledgments. Work partially supported by SMaRT COnSTRUCT (CUP
J53C24001460006), in the context of FAIR (PE0000013, CUP B53C22003630006)
under the National Recovery and Resilience Plan (Mission 4, Component 2,
Line of Investment 1.3) funded by the European Union - NextGenerationEU. I
thank Roberto Casaluce and Antonio Corallo for discussions on the integration
of MultiVeStA and Mesa, and Roberto also for creating a preliminary version
of Figure 2. I thank Marco Pangallo and Daniele Giachini for discussions on the
Schelling model and on economic ABMs in general.

References

1. van der Aalst, W.M.: Process Mining. Springer, 2nd edn. (2016)
2. Agha, G., Palmskog, K.: A survey of statistical model checking. ACM Trans. Model.

Comp. Simul. 28(1), 6:1–6:39 (2018)
3. Agha, G.A., Meseguer, J., Sen, K.: PMaude: Rewrite-based specification language

for probabilistic object systems. In: Cerone, A., Wiklicky, H. (eds.) QAPL 2005.
ENTCS, vol. 153(2), pp. 213–239. Elsevier (2006)

18 Andrea Vandin

4. Alexopoulos, C., Goldsman, D.: To batch or not to batch? ACM Transactions on
Modeling and Computer Simulation (TOMACS) 14(1), 76–114 (2004)

5. Alexopoulos, C., Seila, A.F.: Implementing the batch means method in simulation
experiments. In: Proc. of WSC 1996. pp. 214–221 (1996)

6. An, G., Wilensky, U.: From artificial life to in silico medicine. In: Komosinski,
M., Adamatzky, A. (eds.) Artificial Life Models in Software, pp. 183–214. Springer
London, London (2009)

7. Bartoletti, M., Chiang, J.H., Junttila, T., Lluch-Lafuente, A., Mirelli, M., Vandin,
A.: Formal analysis of lending pools in decentralized finance. In: Proc. of ISoLA
2022. LNCS, vol. 13703, pp. 335–355. Springer (2022)

8. ter Beek, M.H., Legay, A., Lafuente, A.L., Vandin, A.: Quantitative security risk
modeling and analysis with RisQFLan. Computers & Security 109, 102381 (2021)

9. ter Beek, M.H., Legay, A., Lluch-Lafuente, A., Vandin, A.: A Framework for Quan-
titative Modeling and Analysis of Highly (Re)configurable Systems. IEEE Trans.
Software Eng. 46(3), 321–345 (2020)

10. Belzner, L., Nicola, R.D., Vandin, A., Wirsing, M.: Reasoning (on) service com-
ponent ensembles in rewriting logic. In: Iida, S., Meseguer, J., Ogata, K. (eds.)
Specification, Algebra, and Software - Essays Dedicated to Kokichi Futatsugi. Lec-
ture Notes in Computer Science, vol. 8373, pp. 188–211. Springer (2014)

11. Bengtsson, J., Larsen, K.G., Larsson, F., Pettersson, P., Yi, W.: UPPAAL - a
tool suite for automatic verification of real-time systems. In: Alur, R., Henzinger,
T.A., Sontag, E.D. (eds.) Hybrid Systems III: Verification and Control, Proceed-
ings of the DIMACS/SYCON Workshop on Verification and Control of Hybrid
Systems, October 22-25, 1995, Ruttgers University, New Brunswick, NJ, USA.
Lecture Notes in Computer Science, vol. 1066, pp. 232–243. Springer (1995).
https://doi.org/10.1007/BFB0020949, https://doi.org/10.1007/BFb0020949

12. Bortolussi, L., Milios, D., Sanguinetti, G.: Machine learning methods in statistical
model checking and system design - tutorial. In: Proc. of RV 2015. LNCS, vol. 9333,
pp. 323–341. Springer (2015)

13. Bortolussi, L., Nicola, R.D., Galpin, V., Gilmore, S., Hillston, J., Latella, D., Loreti,
M., Massink, M.: CARMA: collective adaptive resource-sharing markovian agents.
In: Proc. of QAPL. EPTCS, vol. 194, pp. 16–31 (2015)

14. Bottazzi, G., Giachini, D.: Far from the madding crowd: Collective wisdom in
prediction markets. Quantitative Finance 19(9), 1461–1471 (2019)

15. Brown, D.G., Page, S., Riolo, R., Zellner, M., Rand, W.: Path dependence and
the validation of agent-based spatial models of land use. International Journal of
Geographical Information Science 19(2), 153–174 (2005)

16. Bruni, R., Corradini, A., Gadducci, F., Lluch-Lafuente, A., Vandin, A.: Modelling
and analyzing adaptive self-assembly strategies with maude. Sci. Comput. Pro-
gram. 99, 75–94 (2015)

17. Caiani, A., Godin, A., Caverzasi, E., Gallegati, M., Kinsella, S., Stiglitz, J.E.:
Agent based-stock flow consistent macroeconomics: Towards a benchmark model.
Journal of Economic Dynamics and Control 69, 375–408 (2016)

18. Casaluce, R., Burattin, A., Chiaromonte, F., Lafuente, A.L., Vandin,
A.: White-box validation of quantitative product lines by statisti-
cal model checking and process mining. JSS 210, 111983 (2024).
https://doi.org/https://doi.org/10.1016/j.jss.2024.111983

19. Casaluce, R., Burattin, A., Chiaromonte, F., Vandin, A.: Process mining meets
statistical model checking: Towards a novel approach to model validation and en-
hancement. In: Cabanillas, C., Garmann-Johnsen, N.F., Koschmider, A. (eds.)
BPM Workshops. pp. 243–256. Springer (2023)

SMC of python ABMs: an integration of MultiVeStA and Mesa 19

20. Casaluce, R., Burratin, A., Chiaromonte, F., Lluch-Lafuente, A., Vandin, A.: En-
hancing threat model validation: A white-box approach based on statistical model
checking and process mining. In: Breve, B., Desolda, G., Deufemia, V., Spano, L.D.
(eds.) Proceedings of the First International Workshop on Detection And Mitiga-
tion Of Cyber attacks that exploit human vuLnerabilitiES (DAMOCLES 2024)
co-located with 17th International Conference on Advanced Visual Interfaces (AVI
2024), Arenzano (Genoa), Italy, Arenzano, Italy, June 4th, 2024. CEUR Workshop
Proceedings, vol. 3713, pp. 9–20. CEUR-WS.org (2024), https://ceur-ws.org/Vol-
3713/paper_2.pdf

21. Ciancia, V., Latella, D., Massink, M., Paškauskas, R., Vandin, A.: A tool-chain for
statistical spatio-temporal model checking of bike sharing systems. In: ISOLA’17
(2017)

22. Conway, R.W.: Some tactical problems in digital simulation. Management Science
10(1), 47–61 (1963). https://doi.org/10.1287/mnsc.10.1.47

23. Corradini, F., Fornari, F., Polini, A., Re, B., Tiezzi, F., Vandin, A.: A formal
approach for the analysis of BPMN collaboration models. JSS 180, 111007 (2021)

24. David, A., Larsen, K.G., Legay, A., Mikucionis, M., Poulsen, D.B.: Uppaal
SMC tutorial. Int. J. Softw. Tools Technol. Transf. 17(4), 397–415 (2015).
https://doi.org/10.1007/S10009-014-0361-Y, https://doi.org/10.1007/s10009-014-
0361-y

25. De Nicola, R., Di Stefano, L., Inverso, O., Valiani, S.: Modelling flocks of
birds and colonies of ants from the bottom up. JSTTT 25(5), 675–691 (2023).
https://doi.org/10.1007/s10009-023-00731-0

26. Dehnert, C., Junges, S., Katoen, J., Volk, M.: A storm is coming: A modern prob-
abilistic model checker. In: Majumdar, R., Kuncak, V. (eds.) Computer Aided
Verification - 29th International Conference, CAV 2017, Heidelberg, Germany,
July 24-28, 2017, Proceedings, Part II. Lecture Notes in Computer Science, vol.
10427, pp. 592–600. Springer (2017). https://doi.org/10.1007/978-3-319-63390-
9_31, https://doi.org/10.1007/978-3-319-63390-9_31

27. Delli Gatti, D., Grazzini, J.: Rising to the challenge: Bayesian estimation and
forecasting techniques for macroeconomic agent based models. Journal of Economic
Behavior & Organization 178, 875–902 (2020)

28. Dosi, G., Fagiolo, G., Roventini, A.: Schumpeter meeting keynes: A policy-friendly
model of endogenous growth and business cycles. JEDC 34(9), 1748–1767 (2010).
https://doi.org/https://doi.org/10.1016/j.jedc.2010.06.018

29. Dosi, G., Roventini, A.: More is different... and complex! the case for agent-based
macroeconomics. Journal of Evolutionary Economics 29(1), 1–37 (2019)

30. Effken, J.A., Carley, K.M., Lee, J.S., Brewer, B.B., Verran, J.A.: Simulating nursing
unit performance with orgahead: strengths and challenges. Computers, informatics,
nursing: CIN 30(11), 620 (2012)

31. Fagiolo, G., Roventini, A.: Macroeconomic policy in dsge and agent-based models.
Revue de l’OFCE 124, 67–116 (2012)

32. Fagiolo, G., Giachini, D., Roventini, A.: Innovation, finance, and eco-
nomic growth: an agent-based approach. JEDC 15(3), 703–736 (2020).
https://doi.org/10.1007/s11403-019-00258-1

33. Fagiolo, G., Roventini, A.: Macroeconomic policy in dsge and agent-based models
redux: New developments and challenges ahead. JASSS 20(1) (2017)

34. Galpin, V., Georgoulas, A., Loreti, M., Vandin, A.: Statistical analysis of CARMA
models: an advanced tutorial. In: Johansson, B., Jain, S. (eds.) Proc. of WSC. pp.
395–409. IEEE (2018). https://doi.org/10.1109/WSC.2018.8632456

20 Andrea Vandin

35. Gilmore, S., Reijsbergen, D., Vandin, A.: Transient and steady-state statistical
analysis for discrete event simulators. In: IFM. pp. 145–160. Springer (2017)

36. Gilmore, S., Tribastone, M., Vandin, A.: An analysis pathway for the quantitative
evaluation of public transport systems. In: IFM (2014)

37. Grimm, V., Railsback, S.F.: Individual-based modeling and ecology. Princeton uni-
versity press (2013)

38. Herd, B., Miles, S., McBurney, P., Luck, M.: Quantitative analysis of multiagent
systems through statistical model checking. In: Engineering Multi-Agent Systems.
pp. 109–130. Springer (2015)

39. Herd, B., Miles, S., McBurney, P., Luck, M.: A monte carlo model checker for
multiagent-based simulations. In: Multi-Agent Based Simulation XVI. pp. 37–54.
Springer (2016)

40. Hussain, F., Langmead, C.J., Mi, Q., Dutta-Moscato, J., Vodovotz, Y., Jha, S.K.:
Automated parameter estimation for biological models using bayesian statistical
model checking. BMC Bioinformatics 16(17), S8 (2015)

41. Kazil, J., Masad, D., Crooks, A.: Utilizing python for agent-based modeling: The
mesa framework. In: Social, Cultural, and Behavioral Modeling. pp. 308–317.
Springer (2020)

42. Kelton, W.D., Law, A.M.: An analytical evaluation of alternative strate-
gies in steady-state simulation. Oper. Res. 32(1), 169–184 (1984).
https://doi.org/10.1287/opre.32.1.169

43. Kroiß, C.: Simulation and statistical model checking of logic-based multi-agent sys-
tem models. In: Agent and Multi-Agent Systems: Technologies and Applications.
pp. 151–160. Springer (2014)

44. Kwiatkowska, M., Norman, G., Parker, D.: Prism: Probabilistic symbolic model
checker. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) Computer
Performance Evaluation: Modelling Techniques and Tools. pp. 200–204. Springer
Berlin Heidelberg, Berlin, Heidelberg (2002)

45. Law, A.M., Carson, J.S.: A sequential procedure for determining the length
of a steady-state simulation. Operations Research 27(5), 1011–1025 (1979).
https://doi.org/10.1287/opre.27.5.1011

46. Law, A.M., Kelton, D.M.: Simulation Modeling and Analysis. McGraw-Hill Higher
Education, http://www.averill-law.com/simulation-book/, 5th edn. (2015)

47. Legay, A., Lukina, A., Traonouez, L.M., Yang, J., Smolka, S.A., Grosu, R.: Statis-
tical Model Checking. In: Computing and Software Science: State of the Art and
Perspectives, pp. 478–504. Springer (2019)

48. Legay, A., Sedwards, S., Traonouez, L.: Rare events for statistical model checking
an overview. In: Proc. of RP 2016. LNCS, vol. 9899, pp. 23–35. Springer (2016).
https://doi.org/10.1007/978-3-319-45994-3_2

49. Legay, A., Traonouez, L.: Statistical model checking with change detection. LNCS
Trans. Found. Mastering Chang. 1, 157–179 (2016). https://doi.org/10.1007/978-
3-319-46508-1_9, https://doi.org/10.1007/978-3-319-46508-1_9

50. Macy, M.W., Willer, R.: From factors to actors: Computational sociology and
agent-based modeling. Annual review of sociology pp. 143–166 (2002)

51. Mann, H.B., Whitney, D.R.: On a Test of Whether one of Two Random Variables
is Stochastically Larger than the Other. The Annals of Mathematical Statistics
18(1), 50 – 60 (1947). https://doi.org/10.1214/aoms/1177730491

52. Mesa: Mesa models repository. https://github.com/projectmesa/mesa-examples,
accessed on 15/05/2024

SMC of python ABMs: an integration of MultiVeStA and Mesa 21

53. Mignogna, A., Mangeruca, L., Boyer, B., Legay, A., Arnold, A.: Sos contract
verification using statistical model checking. In: Larsen, K.G., Legay, A., Ny-
man, U. (eds.) Proceedings 1st Workshop on Advances in Systems of Systems,
AiSoS 2013, Rome, Italy, 16th March 2013. EPTCS, vol. 133, pp. 67–83 (2013).
https://doi.org/10.4204/EPTCS.133.7, https://doi.org/10.4204/EPTCS.133.7

54. Nicola, R.D., Ferrari, G., Pugliese, R.: Locality based linda: Programming with
explicit localities. In: Bidoit, M., Dauchet, M. (eds.) Proc. of TAPSOFT’97.
Lecture Notes in Computer Science, vol. 1214, pp. 712–726. Springer (1997).
https://doi.org/10.1007/BFB0030636

55. Nicola, R.D., Stefano, L.D., Inverso, O.: Multi-agent systems with virtual stig-
mergy. SCP 187, 102345 (2020). https://doi.org/10.1016/J.SCICO.2019.102345

56. Pangallo, M., Aleta, A., del Rio-Chanona, R.M., Pichler, A., Martín-Corral,
D., Chinazzi, M., Lafond, F., Ajelli, M., Moro, E., Moreno, Y., Vespignani,
A., Farmer, J.D.: The unequal effects of the health–economy trade-off dur-
ing the covid-19 pandemic. Nature Human Behaviour 8(2), 264–275 (2024).
https://doi.org/10.1038/s41562-023-01747-x, https://doi.org/10.1038/s41562-023-
01747-x

57. Parker, C.: Pseudocode of boids flocks model. https://vergenet.net/ conrad/boid-
s/pseudocode.html, accessed on 15/05/2024

58. Pianini, D., Sebastio, S., Vandin, A.: Distributed statistical analysis of complex
systems modeled through a chemical metaphor. In: HPCS. pp. 416–423 (2014)

59. Poledna, S., Miess, M.G., Hommes, C.H.: Economic forecasting with an agent-
based model (2020), available at SSRN 3484768

60. Rasmussen, J.I., Behrmann, G., Larsen, K.G.: Complexity in simplicity: Flexible
agent-based state space exploration. In: TACAS’07. pp. 231–245. Springer (2007)

61. Rasmussen, J.I., Behrmann, G., Larsen, K.G.: Complexity in simplicity: Flexible
agent-based state space exploration. In: Proc. of TACAS 2007. LNCS, vol. 4424,
pp. 231–245. Springer (2007). https://doi.org/10.1007/978-3-540-71209-1_19

62. Reinhardt, O., Warnke, T., Uhrmacher, A.M.: A language for agent-based discrete-
event modeling and simulation of linked lives. ACM TOMACS 32(1), 6:1–6:26
(2022). https://doi.org/10.1145/3486634

63. Reynolds, C.W.: Flocks, herds and schools: A distributed behavioral model. In:
Proceedings of the 14th annual conference on Computer graphics and interactive
techniques. pp. 25–34 (1987)

64. Richiardi, M.G., Richardson, R.E.: Jas-mine: A new platform for microsimulation
and agent-based modelling. Int. Journal of Microsimulation 10(1), 106–134 (2017)

65. Schelling, T.C.: Dynamic models of segregation†. The Journal of Mathematical
Sociology 1(2), 143–186 (1971). https://doi.org/10.1080/0022250X.1971.9989794

66. Sebastio, S., Vandin, A.: MultiVeStA: statistical model checking for discrete event
simulators. In: Proc. of ValueTools’13. pp. 310–315. ICST/ACM (2013)

67. Secchi, D., Seri, R.: Controlling for false negatives in agent-based models: a review
of power analysis in organizational research. Comput. and Mathematical Organi-
zation Theory 23(1), 94–121 (2017). https://doi.org/10.1007/s10588-016-9218-0

68. Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of black-box prob-
abilistic systems. In: CAV 2004. pp. 202–215. Springer (2004)

69. Steiger, N.M., Lada, E.K., Wilson, J.R., Joines, J.A., Alexopoulos, C., Goldsman,
D.: Asap3: A batch means procedure for steady-state simulation analysis. ACM
TOMACS 15(1), 39–73 (2005)

70. Tafazzoli, A., Wilson, J.R., Lada, E.K., Steiger, N.M.: Performance of skart: A
skewness-and autoregression-adjusted batch means procedure for simulation anal-
ysis. INFORMS Journal on Computing 23(2), 297–314 (2011)

22 Andrea Vandin

71. Tesfatsion, L., Judd, K.L.: Handbook of computational economics: agent-based
computational economics. Elsevier (2006)

72. Uhrmacher, A.M., Weyns, D. (eds.): Multi-Agent Systems - Simulation and Ap-
plications. Computational Analysis, Synthesis, and Design of Dynamic Systems,
CRC Press / Taylor & Francis (2009). https://doi.org/10.1201/9781420070248

73. Valente, M.: Laboratory for simulation development: Lsd. Tech. rep., LEM Working
Paper Series (2008)

74. Vandin, A., ter Beek, M.H., Legay, A., Lluch-Lafuente, A.: QFLan: A Tool for the
Quantitative Analysis of Highly Reconfigurable Systems. In: FM (2018)

75. Vandin, A., Giachini, D., Lamperti, F., Chiaromonte, F.: Multivesta: Statistical
analysis of economic agent-based models by statistical model checking. In: From
Data to Models and Back - 10th International Symposium, DataMod 2021, Revised
Selected Papers. Lecture Notes in Computer Science, vol. 13268, pp. 3–6. Springer
(2021). https://doi.org/10.1007/978-3-031-16011-0_1

76. Vandin, A., Giachini, D., Lamperti, F., Chiaromonte, F.: Automated and dis-
tributed statistical analysis of economic agent-based models. JEDC 143, 104458
(2022). https://doi.org/https://doi.org/10.1016/j.jedc.2022.104458

77. Welch, B.L.: The generalization ofstudent’s’ problem when several different popu-
lation variances are involved. Biometrika 34(1/2), 28–35 (1947)

78. Whitt, W.: The efficiency of one long run versus independent replications in steady-
state simulation. Management Science 37(6), 645–666 (1991)

79. Wilensky, U.: NetLogo (1999), http://ccl.northwestern.edu/netlogo/. Center for
Connected Learning and Computer-Based Modeling, Northwestern University,
Evanston, IL.

80. Wirsing, M., Hölzl, M.M., Acciai, L., Banti, F., Clark, A., Fantechi, A., Gilmore, S.,
Gnesi, S., Gönczy, L., Koch, N., Lapadula, A., Mayer, P., Mazzanti, F., Pugliese,
R., Schroeder, A., Tiezzi, F., Tribastone, M., Varró, D.: Sensoriapatterns: Aug-
menting service engineering with formal analysis, transformation and dynamicity.
In: Proceedings of ISoLA 2008. Communications in Computer and Information
Science, vol. 17, pp. 170–190. Springer (2008). https://doi.org/10.1007/978-3-540-
88479-8_13

81. Younes, H.L.: Probabilistic verification for “black-box” systems. In: CAV 2015. pp.
253–265. Springer (2005)

