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Abstract. Fault injection is a sophisticated attack in which an attacker
may sidestep security of an application by inducing bit-flips in the un-
derlying platform. These attacks are typically performed by tampering
with the system hardware, but recent RowHammer attacks have shown
that bit-flips can be induced predictably and on a large scale through
software alone [12]. It is practically impossible for a developer to evaluate
and assess if and how much an application is vulnerable to RowHammer
attacks. In this paper, we leverage statistical model checking (SMC) to
help with these challenges by modelling and analysing potential e!ects of
bit-flips as well as measure the e”cacy of proposed mitigation. We illus-
trate our approach on SUDO, one of several security critical applications
recently targeted in the RowHammer-based Mayhem attacks [1].

Keywords: Bit-flips · Fault attacks · Software verification · Model Check-
ing · Formal Methods

1 Introduction

It has long been known that sophisticated attackers can circumvent security in
a system by deliberately inducing faults during execution of critical code, e.g.,
in the access control checks or the cryptographic primitives [5,18]. Such attacks
are called fault injection attacks or bit-flip attacks since the e!ect of such a fault
is typically to “flip” bits in memory or a hardware register.

Generally, fault injection attacks were thought to be primarily a problem
for systems where an attacker could gain physical access to tamper with the
hardware [4,8]. However, this view changed with the discovery of “RowHammer”
attacks [12], showing that large clusters of bit-flips could be induced in a highly
predictable way through software alone. Recently researchers succeeded in using
RowHammer to attack the stack variables and register values of an application.
This was showcased by attacking security critical systems software like SUDO
and SSH among others, in an attack dubbed “Mayhem” [1].
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Targeted fault injection attacks are not only di”cult and costly to defend
against, it is also very di”cult for developers to actually assess if or how vulner-
able an application is to such attacks and how e!ective potential mitigation is.
In this paper, we leverage statistical model checking (SMC) to help with these
challenges. Using the applications targeted in the Mayhem attack [1], SUDO and
SSH, as illustrative examples, we first show how the security critical parts of the
code can be modelled; we next use SMC to find possible bit-flip attacks in the
code, replicating and validating the findings of the Mayhem attacks, but also
resulting in the discovery of a novel bit-flip attack; finally we show ho SMC can
be used to evaluate the e”cacy of proposed defensive measures, such as those
implemented in SUDO [13] to mitigate the e!ects of the Mayhem attack. In par-
ticular, we use SMC to determine if the proposed mitigation o!ers statistically
significant improvement against bit-flip attacks.

We consider the following to be the main contributions of the paper:

– A formal approach to modelling security critical application code;
– The use of symbolic model checking to find bit-flip attacks and/or verify

existing bit-flip attacks;
– The use of statistical model checking to determine if the e”cacy of proposed

mitigation is statistically significant;
– Validation of our approach on the security critical applications SUDO and

OpenSSH, recently found vulnerable to RowHammer attacks (the latter only
briefly described in this paper). We verify the reported vulnerabilities and
report on novel bit-flip attacks against the strCmp() function used, e.g., in
SUDO.

2 Modelling Code, Bit-flips, and Attackers

Formally, we model a program (written in RISC-V assembly code) as a so-called
control-flow automaton, in which edges correspond to instructions and locations
correspond to the program points immediately before and after an instruction.
We have chosen to model programs at the assembly code layer, since bit-flips and
their e!ects are more naturally represented at this layer. The e!ect of executing
instructions, i.e., the semantics of instructions, is modelled as a set of operations
Ops(R), parameterised over the set of available registers R, and used to annotate
corresponding edges in the control-flow automaton. Edges may also be annotated
with boolean guards, G(R), similarly parameterised over the set of available
registers. Formally we define

Definition 1. A control-flow automaton over a set of registers R is a tuple
C = →L, ω̂, E↑ where

– L is a finite set of control locations,
– ω̂ ↓ L is the initial location, and
– E ↔ (L↗ G(R)↗ L) ↘ (L↗ Ops(R)↗ L) is a set of edges, with

• Ops(R) is a set of operations over the registers, and
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1 xor x1,x1,x1 ; x1 = 0

2 slti x2,x1,10 ; x2 = (x1 < 10)

3 loop:

4 beq x2,x0,l8 ; if(x2 == 0) goto l8

5 addi x1,x1,1 ; x1 = x1 + 1

6 slti x2,x1,10 ; x2 = (x1 < 10)

7 j loop ; goto loop

8 l8:

9 add x3,x0,11 ; x3 = 11

10 bne x1,x3,good ; if (x1 != x3) goto good

11 error:

12 nop ; error if(x1 == 11)

13 good:

14 nop

Listing 1.1. An Example Program

• G(R) is a set of boolean expressions over the registers.

As a shorthand we write l
o≃⇐ l↑ whenever (l, o, l↑) ↓ E and o ↓ Ops(R) and l ≃⇐

g
l↑

whenever (l, g, l↑) ↓ E and g ↓ G(R).

Registers are assigned values from a domain of bitvectors Bn of width n, via a
mapping v : R ⇐ Bn representing the current state of execution in our model.
We let V n be the set of all such mappings. For any operation o ↓ Ops(R)
we assume there exists a function Mo : V n ⇐ V n implementing the semantic
meaning of that operation, i.e., defines how the state changes during execution
in our model. Likewise, we assume it is possible for any element b ↓ G(R) and
any mapping v ↓ V ns to determine if b is satified by v (written b ↭ v) or not
(written b ⇒↭ v).

Example 1. As an example of a control-flow automaton (CFA), consider the
RISC-V assembly code in Listing 1.1. The code is for illustrative purposes only,
but is loosely based on a PIN code checker that verifies that a checking loop
has been iterated the expected number of times. The CFA representation of
this program can be seen in Figure 1. It uses four registers: x01, x1, x2, and x3.
The initial location is indicated by the black node (numbered 1). Guards over
the registers are marked with an orange color. The red node (numbered 12) in
the CFA marks the location corresponding to the error label of the program,
indicating that the program has reached an error state.

The states of a control-flow automaton →L, ω̂, E↑ over registers R with domain
Bn are elements →l, v↑ ↓ L↗ V n where l is the current control location and v is
the current value of the registers. The initial state is the element →ω̂, v0↑ where v0
assigns a default value to all registers. In many cases, we let this default value
be 0, but it can in principle be any value in Bn. In normal operations the CFA
may transit from the state →l, v↑ to another state →l↑, v↑↑ (denoted →l, v↑ ⇐ →l↑, v↑↑)
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xor x1,x1,x1

slti x2,x1,10

x2 != x0

addi x1,x1,1

slti x2,x1,10

addi x3,x0,11

x2 == x0

x1== x3
x1!=x3

Fig. 1. CFA Representation of code in Listing 1.1

if (1) there exists an edge l
o≃⇐ l↑ and v↑ = Mo(v) and (2) there exists an edge

l ≃⇐
g

l↑,v↑ = v and v ↭ g.

Our definition of CFAs allows the definition of non-deterministic behaviours.
However, as we model closed programs with no external interaction we find
non-deterministic executions are unwanted behaviour and will assume CFAs are
deterministic meaning that for any state s, if s ⇐ s1 and s ⇐ s2 then s1 = s2.

An execution of a CFA →L, ω̂, E↑ is a (possibly infinite) sequence of states
s0, s1, s2, . . . such that s0 is the initial state and for all i we have si ⇐ si+1.

Example 2. Consider again the CFA in Figure 1. A (partial) execution of this
CFA with standard RISC-V semantics is the sequence

→ 1 ,

[
x0 ↓↔0
x1 ↓↔0
x2 ↓↔0
x3 ↓↔0

]
↑→ 2 ,

[
x0 ↓↔0
x1 ↓↔0
x2 ↓↔0
x3 ↓↔0

]
↑→ 4 ,

[
x0 ↓↔0
x1 ↓↔0
x2 ↓↔1
x3 ↓↔0

]
↑→ 5 ,

[
x0 ↓↔0
x1 ↓↔0
x2 ↓↔1
x3 ↓↔0

]
↑ . . .

2.1 Attacker Modelling

Since we wish to analyse the behaviour of programs while under attack, we
need an explicit model of the potential actions an attacker may perform. In our
work the only actions an attacker can perform are 1) flip(r, i) to flip the ith

bit of register r, and 2) skip indicating the attacker does nothing. For a set of
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registersR we let Act(R) = {flip(r, i)|r ↓ R}↘{skip}. If the attacker performs
multiple flips in rapid succession then they can, essentially, overwrite a register
with whatever value they wish. A CFA in state →ω, v↑ will under a flip(r, i)
action forcefully transit to state →ω, v↑↑ where v[r ⇑⇐ (v(r)

⊗
s(2i))]↑ and

⊗
is the

bitwise exclusive or operation. We denote this transition by →ω, v↑
flip(r,i)↫↫↬ →ω, v↑↑.

If we have A ↔ Act(R) then we allow writing →ω, v↑ A↫↫↬ s to find state s which
is the result of applying each action in A successively.We can now model an
attacker against a CFA C = →L, ω̂, E↑ over registers R as a transition system
→SA, ŝA,P, ↫↫↬↑ where

– SA is a set of states,
– ŝA ↓ SA is the initial attacker state,
– P is a set of propositions giving the attacker (limited) information about the

state of the CFA, and
– ↫↫↬↔ SA ↗ 2P ↗ 2Act(R) ↗ SA is a set of transitions labelled with actions

the attacker performs and guarded by a set of propositions that must be

true while transitting. As a shorthand we allow writing s0
p,a↫↫↬ s1 whenever

(s0, p, a, s1) ↓↫↫↬.

We assume the existence of a function K : S ⇐ 2P mapping CFA states S
to observable propositons. Having all these parts in place we can now define
transition rules for how an attacker and the CFA interact:

s ⇐ s1

K ⇓ (s, sA) ⇐ (s1, s
A)

s
a↫↫↬ s1 sA

p,o↫↫↬ sA1 p ↔ K(s)

K ⇓ (s, sA)
a↫↫↬ (s1, s

A
1)

Example 3. Consider again the CFA in Figure 1 this time running in parallel
with an attacker that is allowed to flip one bit in any register but only once:
→{sA1, sA2}, ⇔, ↫↫↬↑ with ↫↫↬= {(sA1, ⇔, rsA2)|r ↓ Act(R)}. Given this fairly re-
stricted attacker we might be wondering whether it is possible to get the program
to malfunction and end in line 12. To answer this we simply explore the joint

state space in search of a state where the CFA is in location 12 . An exploration
of this kind will reveal the following execution

(→ 1 ,

[
x0 ↓↔0
x1 ↓↔0
x2 ↓↔0
x3 ↓↔0

]
↑, sA1)(→ 2 ,

[
x0 ↓↔0
x1 ↓↔0
x2 ↓↔0
x3 ↓↔0

]
↑, sA1)(→ 4 ,

[
x0 ↓↔0
x1 ↓↔0
x2 ↓↔1
x3 ↓↔0

]
↑, sA1)

(→ 5 ,

[
x0 ↓↔0
x1 ↓↔0
x2 ↓↔1
x3 ↓↔0

]
↑, sA1)(→ 6 ,

[
x0 ↓↔0
x1 ↓↔1
x2 ↓↔1
x3 ↓↔0

]
↑, sA1)(→ 4 ,

[
x0 ↓↔0
x1 ↓↔1
x2 ↓↔1
x3 ↓↔0

]
↑, sA1) . . .

(→ 4 ,

[
x0 ↓↔0
x1 ↓↔10
x2 ↓↔0
x3 ↓↔0

]
↑, sA1) !(→ 4 ,

[
x0 ↓↔0
x1 ↓↔10
x2 ↓↔1
x3 ↓↔0

]
↑, sA2)(→ 5 ,

[
x0 ↓↔0
x1 ↓↔10
x2 ↓↔1
x3 ↓↔0

]
↑, sA2)

(→ 6 ,

[
x0 ↓↔0
x1 ↓↔11
x2 ↓↔1
x3 ↓↔0

]
↑, sA2)(→ 4 ,

[
x0 ↓↔0
x1 ↓↔11
x2 ↓↔0
x3 ↓↔0

]
↑, sA2)(→ 8 ,

[
x0 ↓↔0
x1 ↓↔11
x2 ↓↔0
x3 ↓↔0

]
↑, sA2)

(→ 9 ,

[
x0 ↓↔0
x1 ↓↔11
x2 ↓↔0
x3 ↓↔11

]
↑, sA2)(→ 12 ,

[
x0 ↓↔0
x1 ↓↔11
x2 ↓↔0
x3 ↓↔11

]
↑, sA2)
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The execution shows the attacker was successful in forcing the CFA into an
error state by “flipping” the result of the test in line 6, falsely indicating that
the content of register x2 is still less than 10. In the execution we have indicated
the place that the flip occured by a ! symbol.

For the remaining parts of this paper we insist attackers are action-deterministic

meaning that for any state sA, if sA
a↫↫↬ sA1 and sA

a↫↫↬ sA2 then sA1 =
sA2. This assumption is mainly needed to make the definition of a probabilistic
semantics easier in the following section. In case we need to model an attacker

with sA
a↫↫↬ sA1 and sA

a↫↫↬ sA2 and sA1 ⇒= sA2 then we can accomodate this

by just creating an extra action a↑ with semantics as a and let sA
a→

↫↫↬ sA2.

2.2 Probabilistic Attacker

In real-life bit-flip attacks, the attacker typically cannot control the specific regis-
ter or bit that flips particularly well. Insted they use techniques that has a certain
probability of flipping bit n of register r. We can model such techniques by adding
to an attacker (SA, ŝA,P, ↫↫↬) a function ε : SA ↗ 2P ⇐ Act(R) ⇐ [0, 1] that
for each state-observation pair assigns probabilities for the potential attacker
actions. For this function to be well-behaved it must: 1. only assign probabilities
to actions that are actually possible; and 2. ε(s, p) must in fact be a probability
mass function. More formally, for any sA ↓ SA and any p ↓ 2P :

– ε(sA, p)(a) ⇒= 0 implies s
p,a↫↫↬ s1 for some s1,

–
(∑

a↗Act(R) ε(s
A, p)(a))

)
= 1

We can now describe the probability that an attacker performs a specific finite
sequence of actions ϑ = a1, a2, a3, . . . , an from state (s, sA) recursively as:

P(s,sA)(ϑ) = ε(sA,K(s))(a1) · P(s→,sA→)(a2, a3 . . . , an),

where (s, sA)
a↫↫↬⇐ (s↑, sA

↑
).

Consider now that we are given two di!erent implementations, C1 and C2 of
the same feature and we want to answer the question

Is C1 more secure than C2?

Given the stochastic nature of the attacker, we believe the most natural way to
answer this question, is to determine if the probability of a successful attack on
C1 is less than the probability of a successful attack on C2. This question could
be answered by use of probablistic model checking or with statistical reasoning
e.g., by performing a t-test (see Section 5 for details).
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Original Code RISCV Code RISCV Basic Block

RISCV Registers Uppaal C-Code

Attacker Model CFA Model

Resulting Model

Compile

Identify used registers

Create Attacker

Identify Basic Block

Rewrite to Uppaal C-code

Create CFA

Combine

Fig. 2. The process used for creating the models.

3 Modelling SUDO and Attackers

In the remainder of this paper, we detail our approach by analysing the critical
parts of the SUDO application using the Uppaal model checker3 for modelling
and analysis.

The SUDO command is an integral part of UNIX-like operating systems. It
allows authorised users to execute commands as another user and is typically
used to execute a few commands with superuser (or administrator) privileges.
This is both more convenient and more secure than having to log in as the
superuser and then execute the commands. However, this also makes SUDO a
security critical component, since a malicious user able to break or circumvent
the SUDO authorisation can perform any privileged actions on the system and
thus fully compromise it. The Mayhem attack showed how SUDO authorisa-
tion could be compromised through targeted bit-flips induced by RowHammer
attacks [1].

As mentioned in the introduction, we model code at the assembly code layer
where the e!ects of bit-flips are more naturally represented. Consequently, we
must first compile the C source of SUDO to RISC-V assembly code. Since we are
only interested in the security critical part, i.e., user authorisation, we first ex-
tract that into a separate stand-alone C file. As a part of this, and to avoid mod-
elling function calls and returns, we also inline library functions, in this case only
the strCmp() function is included. The resulting, simplified C source can be seen
in Listing 1.2, reduced essentially to the source of the sudo passwd verify()

function and its dependencies. The simplified C code is then compiled to assem-

3
https://uppaal.org/

https://uppaal.org/
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1 #define AUTH_SUCCESS 0x52a2925 /* 0101001010100010100100100101 */

2 #define AUTH_FAILURE 0xad5d6da /* 1010110101011101011011011010 */

3

4 typedef struct sudo_auth {

5 unsigned int flags; /* various flags, see below */

6 int status; /* status from verify routine */

7 const char *name; /* name of the method as a string */

8 void *data; /* method-specific data pointer */

9 } sudo_auth;

10

11 int sudo_passwd_verify(const char *pass, sudo_auth *auth)

12 {

13 char *pw_passwd = auth->data;

14 int ret;

15

16 int strCmpRes = 4095;

17 while (*pass == *pw_passwd++)

18 if (*pass++ == ’\0’){

19 strCmpRes = 0;

20 break;

21 }

22 if (strCmpRes != 0)

23 strCmpRes = (*(const unsigned char *)pass -

24 *(const unsigned char *)(pw_passwd - 1));

25

26 if (strCmpRes == 0)

27 ret = AUTH_SUCCESS;

28 else

29 ret = AUTH_FAILURE;

30

31 return ret;

32 }

Listing 1.2. Modified sudo passwd verify()

bly code, in this case using the Compiler Explorer4 for convenience, and divided
into the basic blocks comprising the control flow of sudo passwd verify(). The
RISC-V code can be seen in Appendix A. The machine registers used are iden-
tified to be used in the attacker specification. The entire process for creating
the model can be seen in Figure 2. As of writing it is a manual process, but
big parts of it could be automated. We will not go into further detail with the
conversion from RISC-V assembly here, merely note that the same process has
been used on OpenSSH, another target of the Mayhem attack, briefly described
in Section 6.

4
https://godbolt.org/

https://godbolt.org/
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Fig. 3. Part of the model for the sudo passwd verify() function

3.1 Modelling sudo passwd verify() in Uppaal

From the assembly code, obtained as described above, we follow the process de-
scribed in Section 2 and model the control-flow automaton corresponding to the
code of the sudo passwd verify() function as a timed automaton in Uppaal.
In this model basic blocks are assigned to nodes and transitions correspond to
executing a basic block implemented in the C like modelling language available
in Uppaal. An excerpt of the model is shown in Figure 3.5

Using timed automata to model the code (and the system) opens a wide
range of options for specifying when bit-flip attacks can occur, e.g., in terms of
how long time or how many CPU cycles have been executed. In this work, we
have chosen a timing model that allows an attacker to perform a bit-flip between
the execution of basic blocks. We implement this approach using a local clock
x to explicitly track and restrict time spent in basic blocks through invariants
x ↖ 1 and guards x ↙ 1.

One notable exception to the use of basic blocks is the block named block3()
which is broken into two parts, named block3_a() and block3_b() respectively,
with a committed location between them to still have the two parts performed
atomically. This is done because we need to check if array indexing during the
execution of block3() will be out of bounds as this will lead to Uppaal throw-
ing an error and halting verification. Therefore, if the value of register a5 is
larger than the variable named size (which is the length of the passwords) after

5 The full model is available from https://github.com/dannybpoulsen/at_

refutation_models

https://github.com/dannybpoulsen/at_refutation_models
https://github.com/dannybpoulsen/at_refutation_models
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executing block3 a() then the model goes into the deadlocked location labeled
MemSegFault, representing a memory fault.

Modelling code and bit-flips at the basic block level simplifies both modelling
and analysis but also means some granularity is lost when looking for potential
attacks. Our approach can, however, easily be adapted to modelling individual
instructions, or even the underlying micro-code. Furthermore, experiments show
that interesting and relevant results can already be obtained with the current
coarse model, cf. Table 1.

To simplify modelling of branching in the code, through branching instruc-
tions such as bne, beq, and so on, we model these instructions, i.e., the final
instruction of a basic block, as a separate urgent location, e.g., location I7 in
Figure 3. The reason for using urgent locations is that the branching instruc-
tions are still part of the basic block executed during the ingoing transitions. We
therefore want these instructions to execute without the delay otherwise imposed
on basic blocks, but not atomically since bit-flips during these comparisons and
the subsequent branching could be of interest.

An urgent location is also used after the execution of all basic blocks to
check the return value of sudo passwd verify(): The model enters one of three
deadlock states depending on whether the authentication is successful, resulting
in the Auth_Succ location (marked green), or whether the authentication has
failed resulting in the Auth_Fail location (marked red), or finally whether a bit-
flip has caused the return value to be unrecognisable, resulting in the Undefined
location (marked orange). The latter is also considered a failed authentication.

We model the memory relevant to the sudo passwd verify() function as
a local struct. This is done because the attacker does not need access to the
memory used by the function since we only look for bit-flips in registers. This of
course means that the registers are globally available in the model so that the
attacker can access them.

In preparation for the intended use of statistical model checking, we en-
code two versions of the sudo passwd verify() code in the same model: the
original version and the patched version that aims to protect against RowHam-
mer attacks [13]. The encoding works by using two committed locations, non-
deterministically choosing between the two versions. This is done by having the
transitions from the location L5 be decided by a global variable called new_ver,
determining which version to use. This works because the two versions of the
function only di!er after reaching the location labeled L5 in the model. If we want
to control whether we use the old or new version explicitly, we can make the sec-
ond location be the initial location and manually choose a value for new_ver.
This can be seen in Figure 3 where the two guards on the transitions from L5
depend on the value of new_ver.

A final thing to note, is that the SUDO password is hardcoded. An alternative
would be to let the model generate a password at random at the start of a trace.
However, even with a small set of values to choose from the state space of the
entire model (sudo passwd verify() and the attacker) grows to the point where
symbolic model checking becomes infeasible. Furthermore, it is often preferable
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Fig. 4. Model of the attacker for SUDO

to be able to control the password explicitly to ensure that corner cases are taken
into account, e.g., particularly weak or strong passwords.

3.2 The Attacker Model

The model for the attacker can be seen in Figure 4. The modelling is inspired in
part by [9]. The attacker starts in the Idle location and can choose to perform
a bit-flip a number of times equal to the global variable MAX_FLIPS per trace.
This is implemented by setting the local variable flips = MAX_FLIPS at the
instantiation of the model and when flips == 0 the attacker goes into the
deadlocked location labelled Done.

As mentioned in the previous section, the attacker can only perform bit-
flips between the execution of basic blocks, as tracked by the clock x, i.e., when
x ↙ 1.

A bit-flip is performed by the attacker by first non-deterministically choosing
a value for the variable called bit and setting currBit = bit. The value of bit
can be between zero and eight. Afterwords the attacker moves to the committed
location labelled Flipping. From here it chooses one of four transitions each
corresponding to a di!erent register. For the model we have chosen these registers
by looking at the RISC-V code for sudo passwd verify() and seeing which
registers are used throughout. Once the attacker chooses one of the transitions
the value of the corresponding register is bitwise XOR’ed with 2currBit resulting
in a simulated bit-flip. Afterwards the attacker returns to the Idle location.

The attacker model is run in conjunction with the model of the code for
sudo passwd verify().
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4 Verification

To evaluate the model under di!erent scenarios we set up variables for the stored
password and the password input by the user. We also limit the number of times
the attacker can bit-flip during a single trace to have more realistic scenarios.

First we look at whether or not the added countermeasures in the new version
of sudo passwd verify() protects against the bit-flip attacks found in the May-
hem attack [1]. This is done by using a configuration where the arrays user_pass
and stored_pass are set to di!erent values and the attacker can bit-flip once
per trace. We then run the following query on the model:

A<> (SUDO.Auth Fail || SUDO.MemSegFault || SUDO.Undefined)

This query should hold if the function is not susceptible to bit-flip attacks by-
passing authentication given non-matching passwords. We run this query on
both the new and old version of the system by changing the new_ver variable.
As expected the query does not hold for the old version of the system. This is
indeed due to the fact that an attacker can flip the value of the matched variable
after strCmp() has been executed (cf. Listing 1.2). Furthermore, the query only
holds for some passwords in the new version. If the passwords have a matching
first character, the query still does not hold (cf. Section 4.1). This means the
changes to the code do increase protection against bit-flip attacks but do not
eliminate them.

While working on verifying the e”cacy of the countermeasures placed in
the new version we also found other possible bit-flip attacks around strCmp().
These were found by changing the passwords and the number of allowed bit-
flips in the model. The attacks can be seen by going through the trace for the
counter-examples that Uppaal gives when a query does not hold.

4.1 Attack A: Comparison Shortcut

In the first bit-flip attack, the attacker only has to guess the first character of a
user’s password to bypass SUDO authentication. The way this attack works is
that, if the attacker correctly guesses the first character of the password, then
they can bit-flip one of the registers (a4 or a5) used to compare the values for
equality during strCmp() (cf. Listing 1.2). If the first character of the input
matches the password, then the values of a4 and a5, in that iteration of the
loop, are equal. This should lead to comparing the characters at the next index
of each string. However, if the attacker flips the value of a4 or a5 to any other
value the comparison yields an inequality (in the model, the location in which
the the bit-flip takes place is I2). This triggers the else branch of strCmp()

which normally subtracts the two di!erent character values from each other.
However, since the values are actually equal this subtraction yields zero, which
makes strCmp() return that the strings are equal.
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4.2 Attack B: Index Skip

We also found further attacks when the attacker is allowed to perform bit-flips
more than once during a trace. These attacks are mainly elaborate versions of
the strCmp() attack described in the previous section (Comparison Shortcut).
As an example, if the correct password is 1234 and the attacker tries to input the
password 2234, then it is possible to bit-flip the register used for pointers to the
array indexes early in the trace so that the first comparison done by strCmp()

is on the second character of the correct password and either the first or second
character of the input. From this point the attacker can perform the Comparison
Shortcut attack.

4.3 Attack C: Result Flip

The last attack we found in the model is when strCmp() checks two values for
equality when they are di!erent, but close to each other. When this happens,
strCmp() subtracts the values and returns the result. If the result is su”ciently
small, then it is feasible to perform a bit-flip and change the result to zero when
the model is in the location labeled I7. This causes ret to be set to the value
AUTH_SUCCESS and bypasses authentication.

5 Statistical Analysis

Given that the new version of SUDO tries to address the bit-flip attack described
in [1] and that we can still identify possible attacks, an interesting question is how
much more secure is the new version compared to the old one. In our view the
“more secure” means attacks are less likely to happen on the improved version
than it is on the original version (given a specific stochastic attacker). To reason
about probabilities we useUppaal SMC [2], which is a statistical model checking
engine in Uppaal. Uppaal SMC performs simulations on a given model instead
of symbolic model checking. This leads to the probabilities of properties holding
rather than hard guarantees.

We use Uppaal SMC to estimate the probability that our attacker succes-
fully attacks the system (i.e., reaches Auth_Succ) on di!erent configurations of
our model. A configuration is in this regard a di!erent initialisation of new_ver,
MAX_FLIPS, user_pass and stored_pass. For each configuration we ran the
query

Pr[<=500;1000000] (<> SUDO.Auth_Succ).

It queries for the probability that the attacker puts the SUDO template in the
Auth Succ location within at most 500 time units. Uppaal estimates the prob-
ability with 1 000 000 samples.

In Table 1 we show the results of these queries along with the hamming
distance between user_pass and stored_pass. To validate whether there is a
significant di!erence between the old version (new_ver = 0 ) and the bit-flip
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MAX_FLIPS user_pass stored_pass Hamming new_ver == 0 new_ver == 1 PValue

1 1245 2245 2 0 0 NAN
2 1245 2245 2 24 23 8.84E-01
3 1245 2245 2 326 332 8.15E-01
4 1245 2245 2 1995 1951 4.83E-01
5 1245 2245 2 5767 5605 1.28E-01

1 1245 6789 9 0 0 NAN
2 1245 6789 9 28 0 1.21E-07
3 1245 6789 9 372 0 6.63E-83
4 1245 6789 9 2061 0 0.00E+00
5 1245 6789 9 5750 0 0.00E+00

1 1245 2289 6 0 0 NAN
2 1245 2289 6 15 18 6.02E-01
3 1245 2289 6 317 354 1.53E-01
4 1245 2289 6 2032 2001 6.25E-01
5 1245 2289 6 5705 5551 1.45E-01

1 1245 1367 3 11169 11217 7.47E-01
2 1245 1367 3 99691 100011 4.50E-01
3 1245 1367 3 99208 99723 2.24E-01
4 1245 1367 3 99081 97397 6.31E-05
5 1245 1367 3 95262 94687 1.65E-01

Table 1. Successful attacks in the new version and old version for di!erent configura-
tions

hardened version (new_ver = 1) we furthermore performed a Welchs t-test [17].
In Table 1 the PValue column shows the p-value of this test. A Welchs t-test is
a classic statistical hypothesis test to test if the means of two distributions are
equal; and the p-value is the probability of getting a result as extreme as the
observed given the two means are equal.

The results indicate that allowing the attacker more flips increases the chance
of successfully attacking both versions in most cases. However it should be noted
that the amount of successful bit-flip attacks does not strictly increase in the last
password configuration in Table 1. This could be due to the fact that, for some
traces, further bit-flips beyond a threshold value might flip non-useful values
or overwrite values achieved with a “correct” bit-flip. This could be interesting
to explore further, but we leave it for future work. The results also indicate
that there is a significant di!erence between the old system and the hardened
system when user_pass and stored_pass are su”ciently far away from each
other. On the other hand, if the passwords are “close” to each other then there
are no observed di!erence between the two versions. The reason for this is that
the majority of the attacks (with Hamming column < 3 ) is of type Attack A
(Comparison Shortcut) and Attack B (Index Skip) and these are possible in both
versions. As the hamming distance between user_pass and stored_pass gets
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larger these attack become less likely and the feasible attacks in the old version
are protected against in the hardened version.

6 OpenSSH

In addition to SUDO, the Mayhem attack was also applied to the auth password()

function in OpenSSH, which plays a similar role to that of sudo passwd verify()

in SUDO, showing that it too is vulnerable to RowHammer attacks. OpenSSH is
the widely used open source implementation of the SSH protocol for secure com-
munication and connection. To demonstrate that our method of modelling bit-
flip attacks can be generalized we have also modelled auth password() using the
same approach as described in Section 3 except that it was not necessary to inline
any functions. Our model confirms the attacks found in the Mayhem attacks.
We have furthermore created and modelled a new version of auth password()

that is not susceptible to these attacks. We will not go into further detail with
OpenSSH here, merely refer to the code along with the models which can be
found on GitHub6.

7 Related Work

Since their discovery, RowHammer attacks and defences against them have been
investigated and explored in-depth [12]. Much of the recent work has focused
on either on making the attacks better, e.g., more precise or less resource inten-
sive [20,14,11], or on possible mitigation against the attacks [3,10,16]. See [15]
for an overview of recent research. However, most of the proposed defences men-
tioned depend entirely on either novel hardware designed specifically to handle
RowHammer or on hardware that has been modified to make RowHammer mit-
igation easier or even possible.

There is little work on applying formal methods, and statistical model check-
ing in particular, to model and analyse applications for bit-flip vulnerabilities.
Some works [6,19,7] simulate hardware failures by modifying the binary code
and demonstrate the program no longer produces the expected result. However,
this is not validated by model checking and it does not consider runtime-induced
bit-flips.

8 Conclusion

In this paper we have shown how statistical model checking can be used to model,
analyse, and evaluate the e!ects of RowHammer-like bit-flip attacks on security
critical code. We believe that this work also shows the great potential of formal
methods in general, and statistical model checking in particular, for helping
developers assessing whether an application is vulnerable to bit-flip attacks and

6
https://github.com/dannybpoulsen/at_refutation_models

https://github.com/dannybpoulsen/at_refutation_models
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also in choosing and assessing potential countermeasures against these attacks,
without requiring or investing in special hardware. Since the proposed method
analyzes the code at the level of basic blocks it requires less time to get a model
up and running. This, of course, means that individual instructions are not
checked for potential bit-flip attacks. However, as shown in this paper, it is
still possible to get valuable results. As with most model checking problems it is
important to discern which parts of the system are critical and focus on modeling
these. It is not feasible to model an entire system as the problem would explode.
Furthermore, in the current models the attacker may choose to flip between the
execution of any basic block up to a specified number of total bit-flips. This
means that the attacker might run out of allowed bit-flips before getting to
vulnerable parts of the code. In larger models it might therefore be necessary to
”guide” the attacker by allowing and disallowing bit-flips in certain sections of
the model. However, this has not been necessary for our cases.
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A RISC-V Code for SUDO

The RISC-V code for the new version of sudo passwd verify() can be seen
below.

This code is for the patched version of SUDO that includes mitigation for the
RowHammer attacks. The Comparison Shortcut attack (Attack A) may happen
after the execution of the code in .L2 (before the beq instruction). The Index
Skip attack (Attack B) may happen right before the execution of the code in label
sudo passwd verify (before function call). The Result Flip attack (Attack C)
may happen right before execution of the second line in .L2 (the bne instruction).

1 sudo_passwd_verify:

2 addi sp,sp,-48 ; allocate stack frame

3 sw ra,44(sp) ; save return address

4 sw s0,40(sp) ; save (old) frame pointer

5 addi s0,sp,48 ; new frame pointer

6 sw a0,-36(s0) ; save arg 0 (*pass)

7 sw a1,-40(s0) ; save arg 1 (*auth)

8 lw a5,-40(s0) ; \

9 lw a5,12(a5) ; | pw_passwd = auth->data

10 sw a5,-20(s0) ; /

11 li a5,4096 ; \

12 addi a5,a5,-1 ; | strCmpRes = 4095

13 sw a5,-28(s0) ; /

14 j .L2

15 .L4:

16 lw a5,-36(s0) ; \

17 addi a4,a5,1 ; | pass++

18 sw a4,-36(s0) ; /

19 lbu a5,0(a5) ; \

20 bne a5,zero,.L2 ; / if (*(old)pass != 0) goto L2

21 sw zero,-28(s0) ; strCmpRes = 0

22 j .L3

23 .L2:

24 lw a5,-36(s0) ;

25 lbu a4,0(a5) ;

26 lw a5,-20(s0) ; \

27 addi a3,a5,1 ; | pw_passwd++

28 sw a3,-20(s0) ; /

29 lbu a5,0(a5) ; \

30 beq a4,a5,.L4 ; / if(*pass == *(old)pw_passwd) goto L4

31 .L3:

32 lw a5,-28(s0) ; \

33 beq a5,zero,.L5 ; / if(strCmpRes == 0) goto L5

34 lw a5,-36(s0) ; \

35 lbu a5,0(a5) ; |

36 mv a4,a5 ; |

37 lw a5,-20(s0) ; | strCmpRes = *pass - *(pw_pass - 1)

38 addi a5,a5,-1 ; |

39 lbu a5,0(a5) ; |
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40 sub a5,a4,a5 ; |

41 sw a5,-28(s0) ; /

42 .L5:

43 lw a5,-28(s0) ; \

44 bne a5,zero,.L6 ; / if (strCmpRes != 0) goto L6

45 li a5,86650880 ; \

46 addi a5,a5,-1755 ; |

47 sw a5,-24(s0) ; / ret = AUTH_SUCCESS

48 j .L7

49 .L6:

50 li a5,181784576 ; \

51 addi a5,a5,1754 ; | ret = AUTH_FAILURE

52 sw a5,-24(s0) ; /

53 .L7:

54 lw a5,-24(s0) ;

55 mv a0,a5 ;

56 lw ra,44(sp) ; restore return address

57 lw s0,40(sp) ; restore frame pointer

58 addi sp,sp,48 ; pop stack frame

59 jr ra ; return
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