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Abstract. We introduce a formal model of transportation in an open-pit
mine for the purpose of optimising the mine’s operations. The model is
a network of Markov automata (MA); the optimisation goal corresponds
to maximising a time-bounded expected reward property. Today’s model
checking algorithms exacerbate the state space explosion problem by ap-
plying a discretisation approach to such properties on MA. We show that
model checking is infeasible even for small mine instances. Instead, we
propose statistical model checking with lightweight strategy sampling
or table-based Q-learning over untimed strategies as an alternative to
approach the optimisation task, using the Modest Toolset’s modes tool.
We add support for partial observability to modes so that strategies can
be based on carefully selected model features, and we implement a con-
nection from modes to the dtControl tool to convert sampled or learned
strategies into decision trees. We experimentally evaluate the adequacy
of our new tooling on the open-pit mine case study. Our experiments
demonstrate the limitations of Q-learning, the impact of feature selec-
tion, and the usefulness of decision trees as an explainable representation.

1 Introduction

The model of Markov decision processes (MDPs) [8, 37] precisely captures the
interplay of controllable or uncontrollable (nondeterministic) choices with ran-
domness. It is simple yet versatile, which has made it popular in finance and
operations research [16], in machine learning as the conceptual foundation of
reinforcement learning [38], and in verification as the core formalism of prob-
abilistic model checking (PMC) [6, 25]. MDPs are fully discrete: they transi-
tion between discrete states in discrete time; the number of choices per state is
countable or finite; and the outcome of a choice is sampled from a discrete prob-
ability distribution. Modelling some applications, however, requires an explicit
representation of continuous real time. Examples include performance evalua-
tion scenarios such as computing the expected number of requests handled by
a server per second, or determining the probability for the execution delay of
a real-time task to exceed a certain bound. Models based on timed automata
(TA) [3] o!er a notion of “hard” real time with fixed deterministic delays or non-
deterministic intervals. The tool Uppaal [7] prominently supports the analysis of
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TA models via traditional and and statistical model checking (SMC) [12]. When
events occur at random times with a known rate, a “soft” real-time model with
stochastic, exponentially-distributed delays based on continuous-time Markov
chains (CTMCs) is more appropriate.

In this paper, we present a novel case study about the optimisation of trans-
port operations in an open-pit mine. It requires consideration of both controllable
choices and stochastic time. The optimisation goal is to schedule trucks carrying
material from shovels to dumps so that the expected total amount of material
carried at the end of a shift is maximised. In abstract terms, this scenario is nat-
urally modelled as a network of Markov automata (MA) [20,24], which combine
the features of MDPs and CTMCs in a compositional manner. The optimisation
goal can then be phrased as a query for the strategy maximising the value of a
time-bounded expected accumulated reward property.

The analysis of MA is implemented by mcsta [14] and Storm [28] via PMC
and by modes via SMC [11]. We use mcsta and modes in this paper; they are
part of the Modest Toolset [23], available online at modestchecker.net. Whereas
PMC [6] uses iterative numeric algorithms on an in-memory representation of
the entire MA’s state space (or of a subset su"cient for an ω-precise approx-
imation [4]), SMC [1] performs a statistical evaluation of a large number of
samples of the MA’s behaviour. E"cient PMC algorithms exist to compute the
values of unbounded properties by analysing the MA’s embedded MDP, and for
time-bounded reachability probabilities [13, 15]. For time-bounded expected re-
wards, however, the only available PMC algorithm today uses a discretisation
approach [27], which exacerbates the state space explosion problem of PMC by
introducing many new states for the many discrete time steps needed for a rea-
sonably precise result. We show in Sect. 6 that even checking the embedded
MDP of small variants of our case study is infeasible; analysing our property of
interest using a discretisation-based approach is thus out of the question.

Our contributions are (1) the introduction of the new open-pit mining case
study (Sect. 2) and its MA model in the Modest modelling language [9, 22]
(Sect. 5); (2) an experimental evaluation (Sect. 6) of two approaches that ex-
tend SMC from estimation to optimisation (as required for MA) on several in-
stances of varying sizes of the case study: smart lightweight strategy sampling
(LSS) [18, 34] and (explicit table-based) Q-learning [38, 39], both implemented
in modes; and (3) two extensions to Modest and modes to make LSS and Q-
learning feasible and their outcomes explainable (Sect. 4). Our first extension is
support for partial observations of states by designating a subset of the model’s
variables as observable. A good choice of observables reduces the sample space of
strategies for LSS and the potential table size for Q-learning without removing
much relevant information, making both methods more e!ective. Their outcomes
are an opaque strategy identifier for LSS and a large table of strategy choices for
Q-learning, both of which are hardly useful for mine operators. We thus created
a new connection from modes to dtControl [5] to obtain a more explainable rep-
resentation in the form of decision trees, implemented with a focus on minimal
memory usage to be able to tackle large problems like the open-pit mining case.

https://www.modestchecker.net/
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Fig. 1: Schematic view of the open pit mine

2 The Open-Pit Mining Case Study

Material transportation is one of the most important aspects that a!ects pro-
ductivity in an open pit mine [2]. Material needs to be transported from the
extraction points to di!erent places depending on if the material contains ore
or is simply waste. The material is loaded onto trucks by shovels that operate
in a region of a single type of material. In general, there could be di!erent type
of ores in di!erent regions, but we will consider only one type of ore here. The
useful material containing ore is hauled by the trucks and dumped on stockpiles
that later will be taken to crushers at the beginning of the ore processing line.
The waste material is hauled and dumped in a separate designated place. Once
a truck has dumped its load, it returns to some shovel and repeats the process.

Trucks may need to queue and wait at some loading or dumping place until
other trucks are loaded or unloaded. Therefore, an appropriate distribution of the
trucks that minimises their waiting time (and any other possible non-productive
time) is crucial. The problem of assigning trucks to shovels and dumping places
during production is called the truck dispatching problem [2, 35], which we ad-
dress in this paper. Using the Modest Toolset, we propose a flexible truck alloca-

tion [35] approach to solve the problem. In such an approach, trucks are assigned
a next dumping place or shovel by a dispatch system whenever they are done
loading at a shovel or unloading at a dumping place, respectively.

Fig. 1 shows a schematic view of the mine operation in which k shovels load
useful material and N → k shovels load waste material. There are l dumping
places associated to stockpiles and M → l waste dumps. A truck loaded with
useful material can only be assigned a stockpile to haul the load to, while a
truck loaded with waste material can only be assigned a waste dump. Empty
trucks that have just dumped their load can be assigned to any shovel. A truck
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takes time to move from one point to the other. Similarly, loading and dumping
are also activities that take time. Our objective is to model this scenario with
Modest and use the available tools of the Modest Toolset in order to maximise
the productivity of the trucks. Concretely, our optimisation goal is to maximise
the total load of material transported in one operation shift.

3 Background: Modelling and Analysis

In this section, we introduce all the existing concepts and technology necessary
for our formal modelling and analysis of the open-pit mining case study.

Preliminaries. Given a set S, its powerset is 2S . A probability distribution over
S is a function µ : S ↑ [0, 1] s.t. spt(µ) def= { s ↓ S | µ(s) > 0 } is countable and∑

s→spt(µ) µ(s) = 1. Dist(S) is the set of all probability distributions over S.

3.1 Markov Automata

Markov automata combine MDPs and CTMCs in an orthogonal manner by
providing two types of transitions: s a→↑ µ as in MDP, and s ω s↑ as in CTMC.
We now define Markov automata formally and describe their semantics.

Definition 1. A Markov automaton (MA) is a tuple M = ↔S, s0, A, P,Q, rr , br↗
where S is a finite set of states with initial state s0 ↓ S, A is a finite set of

actions, P : S ↑ 2A↓Dist(S)
is the probabilistic transition function, Q : S ↑

2Q↓S
is the Markovian transition function, rr : S ↑ [0,↘) is the rate reward

function, and br : S ≃ Tr(M) ≃ S ↑ [0,↘) is the branch reward function.

Tr(M) def=
⋃

s→S P (s) ⇐Q(s) is the set of all transitions; it must be finite. We

require that br(↔s, tr , s↑↗) ⇒= 0 implies tr ↓ P (s) ⇐Q(s).

We also write s a→↑ µ for ↔a, µ↗ ↓ P (s) and s ω s↑ for ↔ε, s↑↗ ↓ Q(s). In s ω s↑,
we call ε the rate of the Markovian transition. We refer to every element of
spt(µ) as a branch of s a→↑P µ; a Markovian transition has a single branch only.
We define the exit rate of s ↓ S as E(s) =

∑
↔ω,s→↗→Q(s) ε.

Intuitively, the semantics of an MA is that, in state s, (1) the probability
to take Markovian transition s ω s↑ and move to state s↑ within t model time
units is ε/E(s) · (1→e↘E(s)·t), i.e. the residence time in s follows the exponential
distribution with rate E(s) and the choice of transition is probabilistic, weighted
by the rates; and (2) at any point in time, a probabilistic transition s a→↑ µ can
be taken with the successor state being chosen according to µ. We refer the
interested reader to e.g. [27] for a complete formal definition of this semantics.

Example 1. We show example MA Me without rewards in Fig. 2. Its initial state
I has a choice between two probabilistic transitions with action labels a and b.
The former leads to each of states S1 and S2 with probability 0.5. The dashed
transitions are Markovian, labelled with their rates. In state B, there is a race
between two Markovian transitions; the expected time spent in B is 1

7 time units.
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Fig. 2: Example MA Me

action a, b;

int s;

alt {

:: a palt { :0.5: {= s = 2 =} :0.5: {= s = 1 =} }

:: b; alt {

:: rate(3) {= s = 2 =}

:: rate(4) {= s = 0 =}

}

};

do {

:: when(s >= 1) rate(s) tau {= s-- =}

:: when(s == 0) rate(1) tau

}

Fig. 3: MA Me in Modest

An MA without Markovian transitions is an MDP; an MA without probabilis-
tic transitions is a CTMC. The separation of transitions into probabilistic and
Markovian enables parallel composition with action synchronisation without the
need to prescribe an ad-hoc operation for combining rates as would be necessary
for CTMC or continuous-time MDP (CTMDP) [37]. For verification, after apply-
ing the semantics of parallel composition, we make the usual closed system and
maximal progress assumptions: probabilistic transitions face no further interfer-
ence and take place without delay. The choice between multiple probabilistic
transitions in a state remains nondeterministic, but all Markovian transitions
can be removed from states that also have a probabilistic transition.

The behaviour of closed, deadlock-free MA M is characterised by the set ϑ
of infinite timed paths in its semantics. Let ϑfin be the finite path prefixes.

Definition 2. A strategy is a function ϖ : ϑfin ↑ Tr(M) s.t. ⇑s ↓ S : ϖ(s) = tr

implies tr ↓ P (s)⇐Q(s). A time-dependent strategy is in S ≃ [0,↘) ↑ Tr(M);
a memoryless strategy is in S ↑ Tr(M).

If we “apply” a strategy to an MA, it removes all nondeterminism, and we are left
with a stochastic process whose paths can be measured and assigned probabilities
according to the rates and distributions in the (remaining) MA. We again refer
the interested reader to e.g. [27] for a fully formal definition.

Given an MA model, we are interested in determining the maximum (supre-
mum) or minimum (infimum) value over all strategies of the following properties:

Expected accumulated reachability rewards: Compute the expected value
of the random variable that assigns to ϱ the sum of its branch rewards and
of each state’s rate reward multiplied with the residence time in that state,
up to the first state in goal set G ⇓ S. This is well-defined if the maximum
(minimum) probability to reach G is 1; otherwise, we define the minimum
(maximum) expected value to be ↘. Memoryless strategies su"ce to achieve
optimal results (i.e. the maximum and minimum expected values).

Time-bounded expected accumulated rewards: Compute the expectation
as above, but instead of stopping at goal states, stop once a given amount
of time T ↓ [0,↘) has elapsed. Time-dependent strategies su"ce.
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Expected reachability rewards can be computed via standard MDP model check-
ing by considering the MA’s embedded MDP, i.e. replacing all remaining Marko-
vian transitions out of a state by a single probabilistic transition, using the rates
as weights to determine the branch probabilities. For time-bounded expected re-
wards, the best choice among probabilistic transitions may depend on the time
remaining to T —thus the need for time-dependent strategies. The only avail-
able model checking algorithm for this type of property discretises the remaining
time [27], exacerbating the state space explosion problem. We therefore propose
to use SMC instead, which however cannot directly deal with the optimisation
problem induced by the nondeterministic choices. We describe the two methods
to deal with finding (near-)optimal strategies in SMC in Sect. 3.3 below.

3.2 Modest for Markov Automata

Modest [9, 22] is the modelling and description language for stochastic timed
systems. It provides process-algebraic operations such as parallel and sequential
composition, parameterised process definitions, process calls, and guards to con-
struct complex models from small reusable parts. Its syntax leans on commonly
used programming languages, and it provides conveniences such as loops and
an exception handling mechanism. To specify complex behaviour in a succinct
manner, Modest provides variables of standard basic types (e.g. bool, int, or
bounded int), arrays, and user-defined recursive datatypes akin to functional
programming languages. We introduce Modest for modelling MA by example:

Example 2. Fig. 3 shows a Modest model whose concrete semantics is our ex-
ample MA Me. Choices between multiple transitions are implemented with the
alt construct. Probabilistic transitions can be labelled with user-defined action
names like a and b, while Markovian transitions—for which a rate is given—
must use the predefined non-synchronising action tau. The palt construct imple-
ments the probability distributions of probabilistic transitions; ; is the sequen-
tial composition operator. Assignments s = 2 are given in assignment blocks
{= ... =}; if a block has multiple assignments, they are executed atomically.

3.3 Analysis of Markov Automata via Statistical Model Checking

Monte Carlo methods such as statistical model checking (SMC) [1], which is
in essence discrete-event simulation [33] for formal models and properties, can
estimate expected rewards in CTMCs. To do so, the SMC algorithm (pseudo-)
randomly samples n finite paths—simulation runs—through the CTMC, collects
each path’s accumulated reward value, and returns the average of the collected
values. The result is correct up to a statistical error and confidence depending
on n. We assume that we can e!ectively perform simulation runs on a high-
level description of the MA (e.g. in Modest). Then, in contrast to PMC, SMC
does not need to store the CTMC’s entire state space and thus runs in constant
memory. SMC is easy to parallelise and distribute on multi-core systems and
compute clusters.
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Input: MA M , iteration budget K, and strategy budget N with N → K.
Output: The maximising strategy ωmax.

1 ε := {ωi | ωi = sample uniformly from Z32, 0 → i → N }

2 while |ε| > 1 do

3 foreach ω ↑ ε do R̂ω := average of ↓K/|ε|↔ simulation run values for ω

4 ε := {ω ↑ ε | R̂ω is among the ↓|ε|/2↔ highest values in { R̂→
ω | ω→

↑ ε } }

5 ωmax := the only remaining strategy identifier in ε

Algorithm 1. Lightweight strategy sampling with the smart sampling heuristics

The simulation of nondeterministic models like MDP or MA, however, re-
quires a strategy to resolve the nondeterminism during simulation. Ideally, such
a strategy should be the optimal one, i.e. one that results in the maximum or
minimum expected reward value. Obtaining optimal strategies experimentally is
infeasible in any sensible model. Instead, best-e!ort methods to find near-optimal
strategies have been devised, notably based on strategy sampling and learning.

Lightweight strategy sampling (LSS) was devised for MDP [34]. On MDP M,

(i) it randomly selects a set ς of N strategies, each identified by a fixed-size
integer (e.g. of 32 bits as in our implementation),

(ii) employs a heuristic (that involves simulating the DTMCs M |ε resulting from
applying a strategy ϖ ↓ ς to M) to select the ϖopt ↓ ς, opt ↓ {max,min },
that appears to induce the highest/lowest probability, and finally

(iii) performs standard SMC on M |εopt to provide an estimate R̂εopt for the opti-
mal expected accumulated reward.

Unless ς happens to include an optimal strategy and the heuristic identifies
it as such, R̂εmax is only an underapproximation (overapproximation) of the
maximum (minimum) expected reward, and subject to the statistical error of
the final SMC step. The e!ectiveness of LSS depends on the probability mass of
the set of near-optimal strategies among the set of all strategies that we sample
ς from: It works well if a randomly selected strategy is somewhat likely to be
near-optimal, but usually fails in cases where many decisions need to be made
in exactly one right way in order to get any non-negligible reward at all.

Smart sampling. We use an MA adaptation of LSS with the smart sampling

heuristics [18] for step (ii). It is schematically presented in Alg. 1 for opt = max.
It receives as inputs the MA, the strategy budget N , and the iteration budget K.
N determines how many strategies will be randomly selected while K is the
number of simulation runs to be performed in each iteration. We require N ⇔ K
so that in the first round, we have at least one simulation per strategy. After
sampling the strategies (line 1), the algorithm runs ↖K/N↙ simulations for each
strategy estimating accumulated rewards (line 3). Afterwards, it discards the
worst half of the strategies (line 4) and simulates the remaining ones with twice
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Input: MA M , time bound T , strategy identifier ω ↑ Z32, hash function H.
Output: The reward r accumulated along the sampled run.

1 s := s0, t := 0, r := 0 // initialise current state, time, and reward
2 while t → T do // run until time bound is reached
3 if P (s) = ↗ then // s has only Markovian transitions
4 ↘t→, ↘ϑ, s→≃≃ := sample sojourn time and transition from Q(s)

5 r := r +min(t→, T ⇐ t) · rr(s) + br(↘s, ↘ϑ, s→≃, s→≃) // collect the reward
6 t := t+ t→ // increase current time
7 else // s is a probabilistic state
8 ↘a, µ≃ := (H(ω.s)mod |P (s)|+1)-th element of P (s) // select transition
9 s→ := sample the next state according to µ

10 r := r + br(↘s, ↘a, µ≃, s→≃) // collect the reward
11 s := s→ // set new current state

Algorithm 2. A single simulation run using a sampled strategy ω in LSS

the number of simulation runs per strategy (line 3 again). The loop repeats until
only one strategy remains, which is ϖmax . In this way, the number of simulation
runs, and thus the runtime, grows only logarithmically in N .

Lightweight strategies. The key to LSS is the constant-memory representation
of strategies as (32-bit) integers. It enables the algorithm to run in constant
memory, which sets it apart from simulation-based machine learning techniques
such as reinforcement learning, which need to store learned information (e.g.
Q-tables, see below) for each visited state.

Alg. 2, the simulation called in line 3 of Alg. 1, shows how this is done.
Apart from the MA M and the time-bounded reward property’s stopping time
T , its inputs include the strategy identifier ϖ ↓ Z32 and a (usually simple non-
cryptographic) uniform deterministic hash function H that maps to values in
Z32. The algorithm is mostly self-explanatory. Lines 4-6 take care of the selec-
tion of the Markovian step, the time advance, and the update of the reward
for the Markovian case. The notable part lies in the case of a choice between
k > 1 enabled probabilistic transitions (line 7). Assuming some total order on
the transitions, the (H(ϖ.s) mod k)-th transition is selected, where ϖ.s is the
concatenation of the binary representations of ϖ and s (line 8). This selection
procedure is deterministic, so we can reproduce the decision for state s at any
time knowing ϖ. For nontrivial H, it is also highly unpredictable: changing a
single bit in ϖ may result in a di!erent decision for many states. The selected
transition is then used to sample the next state and the update of the reward
(lines 9 and 10). Finally, after updating the accumulated reward and the current
state, the loop continues until the time limit T is reached.

Observe that Alg. 2 implements a memoryless strategy, whereas time-de-
pendent strategies would be needed to obtain optimal results for time-bounded
reward properties. This is a practical simplification to make LSS work e!ectively:
If we used time-dependent strategies directly by e.g. feeding a floating-point
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Input: MA M , time bound T , number of episodes N , family of learning rates
{ϖi}

N
i=1, family of exploration likelihoods {ϱi}

N
i=1, discount factor ς.

Requires: s0 is a state with probabilistic transitions.
Output: Table Q assigning expected discounted reward to state-action pairs.

1 for i := 1 to N do

2 s := s0, t := 0 // initialise current state and time
3 while t → T do // run until time bound is reached
4 ↘a, µ≃ := sample uniformly from P (s) // s has probabilistic transitions

⇒εi arg max
↑a→,µ→↓↔P (s)

Q(s, a→) // ⇒εi : random choice with probability ϱi

5 s→ := sample the next state according to µ

6 r := br(↘s, ↘a, µ≃, s→≃) // collect the reward
7 s := s→, s→→ := s→ // set new current state
8 while t→T ⇑ P (s→)=↗ do // while s→ has only Markovian transitions:
9 ↘t→, ↘ϑ, s→→≃≃ := sample sojourn time and transition from Q(s→)

10 r := r+min(t→, T ⇐ t) · rr(s→) + br(↘s→, ↘ϑ, s→→≃, s→→≃) // collect reward
11 s→ := s→→, t := t+ t→ // set new state and increase time

12 Q(s, a) := (1⇐ ϖi) · Q(s, a) + ϖi ·
(
r + ς ·max↑a→→,µ→→↓↔P (s→→) Q(s→→, a→→)

)

13 s := s→→ // set new current state

Algorithm 3. Q-learning algorithm for MA

representation of T into H as well, then all strategies would break down to
behaving like the uniformly random strategy [17]; if we used discretisation like
in the model checking algorithm, the space of strategies would blow up so much
that the probability of sampling a useful strategy would be negligible.

Q-learning (QL) [39] is a popular method for reinforcement learning (RL) [38],
a machine learning approach to train agents to take actions maximising a reward
in uncertain environments. Mathematically, the agent in its environment can
be described as e.g. a MA5: the agent chooses actions while the environment
determines the probabilistic outcomes of the actions in terms of successor states.
QL maintains a Q-function Q : S ≃ A ↑ [0, 1] stored in explicit form (as a so-
called Q-table) initialised to 0 everywhere. For MA, the Q-table only needs to
store values for states with probabilistic transitions.

Algorithm. Using a family of learning rates {φi}Ni=1, a family of exploration

likelihoods {ωi}Ni=1, and a discount factor ↼ ↓ (0, 1], N learning episodes are per-
formed following Alg. 3. For each episode i starting from s being the MA’s initial
state s0 assumed w.l.o.g. to be probabilistic, the algorithm selects with probabil-
ity ωi whether to explore possibly new decisions by sampling uniformly from the
set P (s) or to exploit what has been learned so far in the Q-table (line 4). This
is called an ω-greedy strategy. Afterwards, the next state is selected randomly
5 To ease the presentation, we assume actions to uniquely identify transitions per state.
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according to the transition’s probability distribution and the reward is collected
(lines 5 and 6). Since the Q-table is only defined on states with probabilistic
transitions, all rewards of states with only Markovian transitions that follow up
to the next probabilistic one are accumulated into the Q-table entry of the pre-
ceding probabilistic state (lines 8-11). After collecting the rewards, the Q-table
is updated (line 12). Here, the learning factor φi determines the impact of new
information on the existing knowledge. Typically, φi and ωi decrease as i—the
number of episodes run so far—increases. A higher ωi allows the algorithm to ex-
plore various actions, avoiding premature convergence to sub-optimal solutions.
As the algorithm learns more about the environment, it becomes beneficial to
gradually reduce ωi, leading to a focus on exploiting the best-known strategies.
Similarly, a high initial φi allows for rapid learning but can destabilise due to
noisy data or outliers. Reducing φi over time helps stabilise the learning process
as the algorithm converges, integrating new information more conservatively [39].
As an optimisation, we skip Q-table updates for states with only one transition.

Discounting and convergence. An episode is very similar to a simulation run. The
main di!erences to simulation as used for LSS are that we update the Q-table to
estimate the “quality” Q(s, a) of taking the action a from state s and follow an
“ωi-greedy” strategy. RL traditionally optimises for expected discounted rewards,
thus the discount factor ↼. Since our objective is undiscounted, we set ↼ to 1.
Standard results [38,39] guarantee that the algorithm converges to the maximal
expected accumulated reward as N ↑ ↘, as long as (i) every state is guaranteed
to be visited infinitely often (i.e. ωi > 0 for all i ∝ 0), (ii) parameters φi and ωi
decrease as i ↑ ↘, and (iii) the families {φi}i≃1 and {ωi}i≃1 fulfill some variant
of the stochastic approximation conditions.

Performance and scalability. While QL is similar to LSS in that it uses
simulation runs—so both are so-called model-free techniques—its memory usage
is in O(|S| · |A|) (for the Q-table) and thus more similar to probabilistic model
checking. For many models, however, QL only explores—and thus stores a Q-
value for—a subset of S. This happens because some parts of the state space
have a very low probability of being reached from s0 within the specified number
of episodes. Additionally, no Q-values need to be stored for states that have
Markovian transitions only or just a single probabilistic transition. The time
spent in LSS and QL depends on the number of simulation runs performed. For
LSS using our smart sampling approach, we need O(N · logK) runs (where K
is the strategy budget and N is the simulation budget per iteration), while QL
needs O(N) runs (where N is the number of episodes to learn from). Each run
(episode) in QL is however slightly more computationally expensive than in LSS
due to the computations involving the Q-table.

4 Tool Extensions

To tackle our new open-pit mining case study, we extended the modes statistical
model checker [11] of the Modest Toolset [23] with three crucial new features
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that we describe in this section: Syntax and LSS- as well as QL-support for
partial obervability (Sect. 4.1), a constant-memory implementation of strategy
extraction from SMC (Sect. 4.2), and a connection to the dtControl tool to obtain
a decision tree representation of strategies (Sect. 4.3). We also implemented LSS
and QL for MA and memoryless strategies as described in the previous section,
as QL was previously only supported for MDP.

4.1 Partial Observability

In practical machine learning, it is common practice to expose to the learner
not the full state of a model, with values for all of the model’s variables, but
only a set of carefully selected features. The learner then e!ectively works on
a smaller state space. We can cast feature selection as a variant of partial ob-

servability, though not with the intention of finding the optimal strategy for the
actual partially-observable MDPs [30] or MAs: such strategies require tracking
probability distributions about which actual states the model could be in based
on the history of observations, resulting in complex strategies and complicating
any possible LSS or QL approach.

In the feature-oriented approach, we simply replace states by observables in
the LSS and QL algorithms. Let ↽ : S ↑ Obs map states to some finite set of
observables Obs. Then, in Alg. 2 for LSS, we replace line 8 by

↔a, µ↗ := (H(ϖ.↽(s)) mod |P (s)|)-th element of P (s);

in Alg. 3 for QL, we replace line 5 by ′ϑi arg max
↔a→,µ→↗→P (s)

Q(↽(s), a↑) and line 12 by

Q(↽(s), a) := (1→ φi) · Q(↽(s), a) + φi ·
(
r + ↼ ·max↔a→,µ→↗→P (s→) Q(↽(s↑), a↑)

)
.

We require that ↽ projects only states with the same actions to the same ob-
servable, i.e.

⇑ o ↓ Obs ⇑ s1, s2 ↓ ↽↘1(o) : (∞µ1 : s1
a→↑ µ1) ∈ (∞µ2 : s2

a→↑ µ2). (1)
Otherwise, the Q-table would become inconsistent; for LSS, the inconsistencies
would become apparent during strategy extraction (see Sect. 4.2 below).

To allow the modeller to describe Obs and ↽, we extended the Modest
language by the ability to mark a subset of the model’s variables as observable.
Then Obs is the set of states projected to observable variables only, and ↽
discards the values of all non-observable values in a state. This is inspired by the
way the Prism language supports partially-observable models [36].

4.2 Strategies from SMC

When the LSS process with smart sampling of Alg. 1 completes, it returns a
strategy in the form of a strategy identifier ϖmax ↓ Z32. When QL as in Alg. 3 is
finished, it returns a strategy in the form of the Q-table Q. Both representations
are not very useful: ϖmax contains no explicit information about its expected
reward or the actual decisions the strategy makes to attain it, while Q is large,
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contains the decisions only implicitly, and max↔a,µ↗→P (s0) Q(s0, a) is an approxi-
mation of the expected reward with no guarantee as to how far from the strat-
egy’s real expected reward it is. To obtain an estimate of the strategy’s expected
reward with a statistical error guarantee, modes therefore performs a separate
SMC analysis of the MA under the strategy. That is, it performs a number of new
simulation runs that is su"cient to attain the error and confidence requested by
the user, and returns their average value as the estimate of the expected reward.

For the open-pit mining case study, however, we are also interested in un-
derstanding the corresponding strategy: How does the mine operator need to
schedule its trucks in order to achieve the computed (hopefully near-maximal)
total load of material transported? To answer this question, we have extended
modes with a novel method to extract (an approximation of) the strategy in a
more explicit form that runs in constant memory, just like SMC and LSS. Fig. 4
shows a schematic overview of the implementation: Each simulation thread (in
a multi-core or distributed setting) writes all state-action pairs chosen by the
strategy that it encounters during the simulation runs it performs into a sepa-
rate binary file on disk. Thus there is no overhead for coordinating the threads
while they run. Only after the SMC process is done and the estimate has been
returned do we process these files: We first concatenate them into a single binary
“merged” strategy file. Then we apply an external-memory merge sort algorithm
to sort the state-action pairs in this file according to some arbitrary order for
the purpose of eliminating any duplicates. At this point, we detect if an LSS
strategy under partial observability violates Eq. 1. If this is the case, the error
is reported and the process is aborted. Otherwise, the resulting table of action
choices for unique states is written to a text file in mcsta’s strategy file format.

4.3 Decision Trees

The tabular strategy file that our new SMC strategy extraction method in modes
delivers is human-readable and arguably more useful that the integer strategy
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identifier or the huge Q-table. It may still be very large, however, hiding inter-
esting patterns such as dependencies between ranges of state variable values and
strategy choices. To obtain a more explainable representation, we implemented
a new connection from modes and mcsta to the dtControl tool. dtControl [5] reads
tabular strategy representations produced by model checkers such as Prism [32]
and Storm [28] or by Uppaal Stratego [19] and learns a decision tree that suc-
cinctly represents the strategy. We implemented support for the textual strategy
file format now used by modes and mcsta via a new dataset loader for dtCon-
trol. By supporting both the SMC and the PMC tool of the Modest Toolset, we
can also compare—on small models—the trees dtControl learns for the complete
strategy obtained by mcsta vs. the one for the usually incomplete table (that
only contains the states actually visited during SMC) generated by modes. We
show decision trees obtained via this new connection for the open-pit mining
case study in Sect. 6.

5 Case Study Modelling

To improve the tractability of the truck dispatching problem, we make some
simplifications on the open-pit mine model. First, we assume all timing aspects
stochastically distributed under exponential distributions, enabling modelling as
MA. Though di!erent truck models can haul significantly di!erent loads in prac-
tice, we assume they are all equal. Also, distances, which determine the travelling
times, are point to point. However, to reduce the number of combinations, we
consider that the distance towards one point—a shovel or a dump—is the same
from any other point (but may di!er from the distance towards a di!erent point).

Modest model. The schematic of all activities that involve a truck—from starting
to go to the shovel until it is finally served and assigned to a dump—is depicted
in Fig. 5. This is what the Modest model of the shovel system in Fig. 6 aims to
capture. The process ShovelSystem receives two parameters: shovel_id identi-
fies this shovel and determines if it loads useful or waste material while t_time
is the average time that a truck needs to travel to this shovel. Variables are
introduced in lines 2-5. Variable trucks_on_road counts the trucks that are ap-
proaching this shovel and variable queue counts the trucks that have arrived and
are queuing for the shovel. The observable Boolean full indicates when a truck
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1 process ShovelSystem(int(0..NS) shovel_id, int(0..MAX_TIME) t_time) {

2 int(0..NR_TRUCKS) queue = 0;

3 int(0..NR_TRUCKS) trucks_on_road = 0; // trucks travelling to this shovel

4 observable int(0..MAX_OBS) stress = 0; // shovel stress level

5 observable bool full = false; // if true, a truck was just loaded

6 do {

7 :: towards_shovel // a truck is sent towards this shovel

8 {= trucks_on_road++, stress = min(trucks_on_road+queue, MAX_OBS) =}

9 :: when(trucks_on_road > 0) // a truck arrives to this shovel

10 rate(trucks_on_road / t_time) {= queue++, trucks_on_road-- =}

11 :: when (queue > 0) rate(1 / LOAD_TIME) // a truck is being loaded

12 {= queue--, stress = min(trucks_on_road + queue, MAX_OBS), full = true =}

13 // The truck is sent to a dump of the right kind for this shovel

14 :: when(full && shovel_id < k) to_dump_0 {= full = false =}

15 . . .
16 :: when(full && shovel_id < k) to_dump_(l ↘ 1) {= full = false =}

17 :: when(full && shovel_id >= k) to_dump_l {= full = false =}

18 . . .
19 :: when(full && shovel_id >= k) to_dump_(ND ↘ 1) {= full = false =}

20 }

21 }

22 process DumpSystem(int(0..ND) dump_id, int(0..MAX_TIME) h_time) {

23 int(0..NR_TRUCKS) queue = 0;

24 int(0..NR_TRUCKS) trucks_on_road = 0; // trucks travelling to this dump

25 observable int(0..MAX_OBS) stress = 0; // dump stress level

26 observable bool empty = false; // if true, a truck has just unloaded

27 do {

28 :: towards_dump // a truck is sent towards this dump

29 {= trucks_on_road++, stress = min(trucks_on_road+queue,MAX_OBS) =}

30 :: when (trucks_on_road > 0) // a truck arrives to this dump

31 rate(trucks_on_road / h_time) {= queue++, trucks_on_road-- =}

32 :: when (queue > 0) rate(1 / UNLOAD_TIME) // a truck is dumping the material

33 {= queue--, stress = min(trucks_on_road + queue, MAX_OBS),

34 load = TRK_LOAD, empty = true =}

35 // The truck is sent to a shovel

36 :: when (empty) to_shovel_0 {= empty = false =}

37 . . .
38 :: when (empty) to_shovel_(NS ↘ 1) {= empty = false =}

39 }

40 }

Fig. 6: Modest models for the shovel and dump systems

is full and should be dispatched to some dump. Observable variable stress do
not play a role in the control flow; we explain it later.

The whole behaviour is captured in the loop in lines 6-20. When a truck is
dispatched to the shovel, it synchronises with action towards_shovel (line 7)
which in turn increases the counter of trucks travelling towards this shovel. If
there are trucks travelling to the shovel (line 9), then one of them may arrive. The
time of arrival of a truck is determined by an exponential distribution of average
t_time that is weighted by the total number of trucks approaching the shovel
(line 10). On arrival, the truck enqueues and the number of approaching trucks
decreases by one. If some truck is waiting for loading then there is certainly one
being loaded and the time of loading is determined by an exponential distribution
of average LOAD_TIME (line 12). When the truck finishes loading, it is removed
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from the queue and variable full is set to indicate that the truck needs to be
dispatched. This happens in lines 14-19. In particular, if shovel_id is smaller
than a given number k, this shovel loads useful material and the truck can only
be dispatched to one of the l dumps with stockpiles. If instead shovel_id is
greater or equal to k, it loads waste and hence the truck should be dispatched to
one of the ND → l waste dumps. The dispatching is carried out with one of the
to_dump_i actions which in turns synchronises with the towards_dump action of
the dump system with identification number i (in process DumpSystem). Action
towards_dump in the dump is the analogon to towards_shovel in the shovel
system. A dump system is modelled similarly, the only di!erence being that
trucks can be dispatched to any shovel regardless of the material they handle.

To obtain a reduced observable domain, only variables full and stress are
made observable. Variable full needs to be observable in order to distinguish
the states in which the dispatching actions are enabled to ensure Eq. 1 holds.
Variable stress is specifically designed to have a reduced observable domain
and can be understood as the shovel stress level. It contains the total number
of trucks that are either approaching to or waiting in the shovel but up to
the maximum MAX_OBS which indicates the maximum stress. This constant is
di!erent in each shovel; we made it depend on the arrival time and the loading
time. A similar decision has been taken for the dump systems.

Apart from the shovel systems and the dump systems, the model is com-
pleted with an initialisation process. Since the mine is not assumed to be in any
particular initial state, the initialisation module dispatches the trucks nondeter-
ministically to any of the sites.

Optimisation objective. The objective is to maximise productivity, i.e. the ex-
pected total load of material moved from the shovels to the dumps during
a shift. Hence, we obtain a branch reward of the capacity of the truck each
time a truck finishes dumping its load. This is indicated with the assignment
load = TRK_LOAD in line 34 of the DumpSystem (see Fig. 6) to the transient

global variable load. A transient variable is not part of the state and only takes
a value other than its default (0 for load) during the execution of the assignment
block. In Modest notation, we analyse the property

Xmax[T == SHIFT](S(load))
which represents the maximum expected value of the sum of load values along
the execution before reaching time SHIFT, which we set to 200.

Though not particularly interesting for the truck dispatching problem, we
also estimate the minimum expected accumulated value of load as well as the
value obtained by the uniform random strategy (that randomly chooses a tran-
sition every time it encounters a state with multiple probabilistic transitions).
This is useful to gain insights into the ability of the LSS and QL engines to
actually optimise (measured by the spread between maximum and minimum
value) and find nontrivial strategies (that di!er from the uniform random one).
In addition, as the result of the integration of modes with dtControl, we are able
to derive decision trees that explain the near-optimal strategies that we find.
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Table 1: Experimental setup

# trucks: 4 5 9 10 35 40 80

# shovels: 6 1 3 6 6 8 10

# dumps: 5 2 2 5 5 8 10

# ore shovels: 3 0 1 3 3 4 5

# ore dumps: 3 0 1 3 3 4 5

combinations shovel ⇐ dump: 15 2 3 15 15 32 50

combinations shovel ⇒ dump: 30 2 6 30 30 64 100

comb. ore shovel ⇐ ore dump: 9 0 1 9 9 16 25

(a) Mine model instances—name is # trucks

Run name Parameters

LSS 10k 1k 10k simulation traces,

1k strategies

LSS 100k 10k 100k simulation traces,

10k strategies

Qlearn 100k 100k episo., 0.5 ω, 0.02

fin-ω, 1.0 ϖ, 0.02 fin-ϖ
Qlearn 3M 3M episo., 0.6 ω, 0.01

fin-ω, 0.6 ϖ, 0.02 fin-ϖ

(b) modes executions

6 Experimental Results

Setup. We use the LSS and QL implementations of modes to estimate the maxi-
mum and minimum expected accumulated load on seven instances of our model
from Sect. 5—see Table 1a for an overview of their configurations. For each in-
stance, besides the uniform run, we execute modes with the algorithms from
Table 1b and let it build confidence intervals of 1% relative half-width in the
final SMC analysis. For each model, property, and run configuration, we execute
modes in two modes: the default with fully-observable states (F ), which considers
all model variables observable, and with partially-observable states (P) follow-
ing the observable annotations in the model. Each experiment is run until a
confidence interval of the requested width is built for the property under study.
We use the center of the intervals to compare the minimum and maximum loads
found by each run on each model, keeping track of the wall-clock runtime. We
execute our experiments on an AMD Ryzen 9 7950X3D system (16 cores) with
128 GB of RAM running 64-bit Ubuntu Linux 22.04.

Results for loads. Figs. 7 and 8 show the results obtained in overview and in de-
tail, respectively. In Fig. 7, for each model and execution configuration, we plot
a vertical rectangle: its lower bound is the minimum estimated by the configura-
tion, and its upper bound is the maximum. Therefore, the taller the rectangle,
the bigger the di!erence between minimum and maximum. The width of a rect-
angle bears no meaning, but its colour does: P runs are blue-greens and F runs
are red-oranges; the darker the hue, the longer the runtime6—but see Fig. 8 for
an objective runtime comparison.

Fig. 7 does not include results for Q-learning with the heavier budget (3M
episodes), because these runs failed for all large models as shown in more detail in
Fig. 8. Furthermore, in three cases of Q-learning with 100k episodes the minimum
load achieved was higher than the maximum load: this is indicated in Fig. 7 with
empty rectangles whose contour is drawn with a dashed line (P model 80, and
F models 9 and 35). This inversion never occurred when using LSS. Finally, the
transversal horizontal gray bars are the results of the uniform runs, which are
plotted to serve as reference point.
6 We use the average runtime of both properties per model and run, whose coe!cient

of variation was in almost all cases below 10% and in two cases 25.3% and 25.1%.
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Fig. 7: Overview of experimental results: minimum and maximum loads.

Fig. 7 shows how the uniform values are closer to the maximum load found
by other runs than to the minimum loads. Besides, all runs with the uniform
random strategy took less than 2–3 seconds to finish. However, in all cases for
LSS, there was no overlap between the final confidence interval produced for the
maximum load and that produced by the uniform random strategy. Thus LSS
shows a statistically significant improvement for minimum and maximum loads
over the uniform strategy here, even in the lighter LSS configuration.

Fig. 8 allows for a better comparison, where we see that the runtimes do
not vary significantly between F and P runs, but instead what we gain by using
partially-observable states are better minimising strategies. Fig. 8 also makes
it clear that increasing the simulation budget of LSS from 10k 1k to 100k 10k
impacts runtime severely, but has only a minor e!ect in terms of finding better
strategies here. Q-learning runs achieved no significantly di!erent results than
the uniform strategy, but incurred higher runtimes (except vs. LSS 100k 10k) and
failed for all large models due to running out of memory for 3M episodes.

Results for strategies. We also study the strategies—and corresponding decision
trees—that modes synthesised to achieve the loads shown in figs. 7 and 8. For
each model, partial- or fully-observable state, and minimum- or maximum-load
objective, Fig. 9 compares the number of choices in a strategy vs. the number
of nodes of the decision tree built for it. We observe that decision trees achieve
a slight compression (i.e. they contain fewer nodes than there are choices of the
corresponding strategy) only in the case of F models. This was expected, since
fully-observable models contain variables that may be of no use to (minimise or)
maximise the load, so removing them from the picture increases the entropy—we
provide a concrete example in Fig. 10b.

Moreover, the strategies found by Q-learning contain much fewer choices than
those of LSS (but note that for models ↭ 35 with F states, and ↭ 40 with P
states, Q-learning failed to produce any strategy). In several cases when comput-
ing minimum loads, Q-learning failed to learn non-zero values for any relevant
states, resulting in empty strategies (since the choices had to be made randomly
for lack of information). As already discussed, the minimum and maximum loads



18

Fully-observable states (F ) Partially-observable states (P)

LSS: 10k simulation 1k strategies

LSS: 100k simulation 10k strategies

Q-learning: 100k episodes

Q-learning: 3M episodes

Fig. 8: Min. and max. expected loads via di!erent algorithms and budgets
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Fully-observable states (F ) Partially-observable states (P)

LSS: 10k simulation 1k strategies

LSS: 100k simulation 10k strategies

Q-learning: 100k episodes

Q-learning: 3M episodes

Fig. 9: Number of strategy choices vs. decision tree nodes
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(a) Model 4, max load, LSS 10k 1k, P
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Fig. 10: Two decision trees of LSS 10k 1k

achieved by this algorithm in its two configurations are quite close to the uniform
random strategy. And while Q-learning with a 3M-episodes budget did achieve
a higher maximum load than the uniform, this is still comparable to the loads
achieved by LSS. Since, on top of this, Q-learning consumes much more memory
and runtime than both LSS and the uniform random strategy, the fact that it
produces smaller decision trees is arguably not a useful advantage here.

Finally, Fig. 10 shows decision trees built by dtControl from strategies synthe-
sised by modes running LSS 10k 1k on models 4 and 5 for maximum load (results
for minimum are similar). The DT from Fig. 10a is small enough to follow its
logic. Its first action is to initialise the mine at the (ore) shovel 0. Then, an ac-
tion is chosen depending on the state of that shovel: if it is full, send a truck to
transport useful material to the (ore) dump 1; otherwise, send a truck to shovel
0, awaiting for it to fill up. This simplistic decision tree reflects the six strategy
choices that modes found during SMC following LSS 10k 1k on P model 4.

The DT of Fig. 10a is small because it was built from a P state, and despite
the fact that model 4 is of middle size: by its number of ore shovels and dumps
it is e!ectively larger than models 5 and 9. In contrast, model 5 is the smallest
with 1 shovel and 2 dumps, none of which are for ore. Notwithstanding, the
snippet shown in Fig. 10b—built from a F state—comes from a DT containing
269 nodes and 268 decisions. This includes the values of variables such as full
shovels as discussed above, but also the number of trucks en route, queued at a
shovel, or at a dump, and even the “program counter” of the DumpSystem process
that should actually be irrelevant (marked in red in Fig. 10b). Compare this to
the DT that both LSS 10k 1k and LSS 100k 10k build for maximum load using P
states, and which consists of three nodes: do either ini_to_dmp_0 (initialise the
system) or else shv_0_to_dmp_0. This strategy sends a truck from the shovel to
its closest dump, thus maximising the load in this toy example, which however
becomes complicated if all model variables are observable as in the F case. For
min load and P state, LSS 10k 1k and LSS 100k 10k never choose to send to dmp_0
but do it to dmp_1 instead.
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E!ectiveness of LSS and QL. Since no model checker implements the analysis of
time-bounded expected accumulated rewards on MA, we have no “ground truth”
to judge the e!ectiveness of LSS and QL in our new implementation. In order
to have an idea of the possible performance of a model checker, we instead ran
mcsta for a rather similar property, namely the expected accumulated reachability

reward where the goal is given by the expiration of a randomly set timer. The
outcome was that mcsta could check the three smallest models (not without
some e!ort in the 4 trucks model for which it took over 15 minutes). For all of
the larger models (namely, models 10, 35, 40 and 80), it ran out of memory.

7 Conclusion

Motivated by a novel case study challenge to optimise operations in an open-pit
mine, we investigated the state of the art in SMC-based optimisation methods
available in tools from the probabilistic verification community. We explained
the LSS and QL approaches, with detailed pseudocode documenting our adap-
tations to the model of MA. To improve the e!ectiveness of the analysis, and to
obtain explainable results, we extended the modes statistical model checker with
support for partial observability to sample/learn based on selected model fea-

tures, with a memory-e"cient approach to collecting strategy decisions—the first
approach to turn LSS’s strategy identifiers into useful information—and with a
connection to dtControl to obtain decision tree representations of complex strate-
gies. Based on a Modest model of the open-pit mining operations, we compared
the e!ectiveness and performance of LSS and QL, with and without selecting
model features. We find that, somewhat surprisingly, the uniform random strat-
egy is hard to beat by sampling or learning—but the methods are e!ective as
evidenced by their ability to find strategies that succeed at minimising the work
done in the mine. Identifying model features pays o!, but always requires care
and a good understanding of the case study at hand. In comparing LSS and
QL, we see that the former works better despite its more simplistic, uninformed
approach. In particular, LSS preserves the constant-memory property of SMC,
while QL runs into the state space explosion problem just like standard model
checking. We conjecture that this e!ect is evidence that, for our case study, no
small “core” [31] exists that su"ces to obtain good strategies while disregarding
a large amount of the mine’s behaviour. Our results reinforce earlier data [26]
hinting at learning-based approaches being inferior to LSS on a level playing
field, but potentially being able to provide much better results when carefully
tweaked, such as by employing neural networks instead of explicit Q-tables and
initialising episodes from non-initial states if the model allows to do so [21]. This
motivates us to compare with neural network-based methods in future work.
Successful results of the partition-refinement learning method implemented in
Uppaal Stratego [29] suggest another approach worth comparing to.

Data availability. The models and tools/scripts to reproduce our experimental evalu-
ation are archived and available at DOI 10.5281/zenodo.13327230 [10].

https://doi.org/10.5281/zenodo.13327230
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