
Adaptive Stopping Algorithms
Based on Concentration Inequalities

Maxime Parmentier and Axel Legay

ICTEAM, UCLouvain, 1348 Ottignies-Louvain-la-Neuve, Belgique

Abstract. Sampling is a key step of stochastic methods. In some con-
texts, minimizing the sample size can be of critical importance and
determine by itself the viability of various approaches. Rethinking the
way samples are generated can even lead to new algorithms, better suited
than their alternatives to tackle specific real-world problems for which
the sampling task is a costly step of the estimation process. For instance,
strategies of formal verification and statistical model checking can be
greatly improved by the use of adaptive stopping algorithms. Instead of
initially computing the necessary sample size, those algorithms generate
the samples progressively while continuously monitoring their progress
along the way, allowing them to stop the sampling process as soon as
possible. We present a generalization of two existing adaptive stopping
algorithms for statistical model checking, and we show how this general-
ization can be exploited to derive tailor-made variations for specific use
cases.

Keywords: Sampling · Estimation methods · Formal Verification · Sta-
tistical Model Checking · Adaptive Stopping Algorithms

1 Introduction

Increasingly complex software and systems are being built and with them, the
demand for reliable and powerful methods of verification only grows. Be it
for medical robots, city-wide tra!c light systems, space-exploring satellites
or autonomous vehicles, failing to ensure a new design meets all its (safety)
requirements can lead to enormous economic losses in the best cases, and to
tragedies in the worst cases.

Testing is the most widespread approach to check the correctness of a system
[8], but it su"ers from many limitations. The number of tests are almost always
very low with respect to the size of the exploration space, because of time and
resource constraints. Moreover, designing relevant tests depends on a priori

knowledge, which can be limited or insu!cient. Lastly, the outcomes of those
tests can be di!cult to interpret and do not always provide a path to a solution
when a problem is discovered.

Formal methods can also be used to prove the correctness of a system [3].
For instance, if an executable model can be built, one can go through every
possible specification or execution of the system and check if all of them meet

2 Maxime Parmentier, Axel Legay

the requirements. However, because the size of a model grows exponentially with
the number of variables which are used for the representation, the so-called state
explosion problem [12], complete methods of model checking are not exploitable
for real-cases applications.

Statistical model checking (SMC) o"ers an excellent trade-o" between the
feasibility of testing protocols and the completeness of model checking theory.
By applying the ideas of formal methods to a well-generated sample, it is indeed
possible in many situations to provide strong and su!cient statistical insight
without having to perform an exhaustive analysis of the system.

Therefore, more and more e"orts have been deployed over the last 30 years
to develop new frameworks and algorithms of SMC [1,28,29]. From basic Monte
Carlo methods [34] to more advanced techniques created to deal with specific
issues of formal verification, such as the problem of how to deal with rare events
[22], both estimation and optimization algorithms have been developed to expand
the class of systems for which SMC can e"ectively be used.

UPPAAL [5] and PRISM [26] are two examples of powerful tools that imple-
ment some of those frameworks and algorithms. They have been used for the
verification of systems as varied as gearbox controllers [31], lip synchronization
algorithms [7], network protocols [27], or large scale rail signalling systems [4].

A common feature that most stochastic algorithms for model checking share is
their sampling process. Given some user-specified parameters, often related to the
precision and confidence level for the estimations, they try to guess a priori the
size of the necessary sample. Unfortunately, either for the sake of simplicity or so
that they can be as universal as possible, they will generally exploit very general
theoretical results to compute that sample size, which leads to overshooting [1,13].
Moreover, independently of whether the sample is completely generated at the
start or in multiple steps, its generation is made agnostically, without exploiting
any knowledge related to or derived from the system.

However, neglecting the importance of the sampling process can have dire
consequences for a SMC algorithm. If the system under scrutiny is so complex that
any single simulation asks for extensive computations, or if the verification process
must be performed “online”, or if the resources allocated for the verification are
purposefully limited (for instance within an embedded system), not minimizing
the size of the sample which needs to be exploited by the algorithm can mean
that a perfectly valid and e!cient algorithm will not be viable in practice.

To tackle that problem, adaptive stopping algorithms proceed di"erently.
Rather than initially generating a large enough sample, then computing their
output, those estimation algorithms progressively grow their sample while contin-
uously updating their estimation and checking if their stopping criterion allows
them to stop. The ongoing progress of the adaptive stopping algorithm determines
whether the stopping criterion is reached, which means the algorithm takes into
account the knowledge already accumulated about the system at any point to
decide if more simulations must be performed. That way, to the condition that
the stopping criterion was proven to have the right properties, the size of the

Adaptive Stopping Algorithms Based on Concentration Inequalities 3

sample can be reduced to a minimum while ensuring that the output will have
the necessary statistical guarantees.

The di!culty of designing new adaptive stopping algorithms resides in the
derivation of new relevant stopping critera. Our main contribution is a gener-
alization of the proofs of two existing adaptive stopping algorithms for SMC,
both based on concentration inequalities, which leads to a versatile and unifying
version of those two algorithms. Moreover, we illustrate how this generalization
can be exploited within the setting of estimating probabilities associated to rare
events. Finally, we analyze the performance of the algorithm thus obtained and
show how it can outperform a state-of-the-art general algorithm which was proven
to be (quasi) optimal.

2 Mathematical Background

For SMC, any quantity that can be obtained with a simulation of a given system
can be seen as a real-valued random variable. The goal of SMC algorithms is gen-
erally either to evaluate or optimize those quantities that describe and determine
the system. Estimation algorithms are those whose objective is to approximate the
(expected) value of such a quantity, while optimization algorithms try to identify
the behavior of the system which will minimize or maximize that quantity.

In some cases, that parameter or key performance indicator can be seen as
the probability that a specific requirement of the system is verified during a
random possible execution of the system, in which case the corresponding random
variable is bounded in [0; 1] [37]. But it can represent more concrete physical
quantities as well, such as the fuel consumption of an engine [39].

Adaptive stopping algorithm, also called stopping (rule) algorithms (SA), are
estimation algorithms which can be exploited for SMC. Their goal is to compute
an estimation of the value of a quantity of interest while minimizing the size of
the necessary sample. More precisely, their goal is to compute (ω, ε)-estimations
with a minimal sample size.

Definition 1.

Let X be a random variable with distribution dX . Let p be a parameter of dX .

Given a precision ω > 0 and a confidence level ε > 0, an (ω,ε)-estimation of p is

an estimation p̂ such that P ((1→ ω)p ↑ p̂ ↑ (1 + ω)p) ↓ 1→ ε.

As a reminder, a random variable X is a measurable function from a probability
space (ϑ,F , P), with ϑ being the set of possible outcomes, to a measurable
space E. For most practical applications, real-valued random variables are used,
i.e. E = R. A (real-valued) random variable X is entirely characterized by its
probability distribution, which can be expressed with the cumulative distribution

function of X: CDFX(x) = P (X ↑ x). The expected value of X is µX = E(X) =∫
ω
XdP , the variance of X is VX = V (X) = E[(X → E(X))2], the standard

deviation of X is ϖX = ϖ(X) =
√

V (X).
Random variables can be used to formalize any random experiment, such as

the generation of a possible specialization or execution of the model of a system

4 Maxime Parmentier, Axel Legay

in the context of SMC. In practice, the random variable X whose parameter
needs to be estimated can be seen as any quantity associated with the system.
The realizations of this random variable are individual values that the quantity
X can take with di"erent possible specifications or executions of the system, and
one can obtain such realizations by running (independent) simulations of the
system. Especially for SMC, the parameter of interest p is generally taken to
be the expected value µ = E(X) of the random variable. In particular, it can
correspond to the probability that a given property which needs to be verified
holds true for a random execution of the system.

The notion of (ω,ε)-estimation is key for SMC algorithms. Indeed, since those
algorithms do not perform exhaustive searches, their outputs must come with
statistical guarantees: the precision ω of their output (how close the estimation
should be to the true value) and the confidence associated with their output (how
likely it is that the true value is at distance at most ω of the estimation). SMC
algorithms always ask for those two parameters, either explicitly or indirectly.
Most SMC algorithms will compute
their sample size a priori in function
of ω and ε (e.g., see [17]). A SA is
instead built upon a stopping crite-

rion, also called stopping rule. That
stopping criterion, which depends on
the chosen precision ω and confidence
level ε, gives a di"erent structure to
adaptive stopping algorithms. In its
most generic form (see Algorithm 1),
such an algorithm is a single loop
that iteratively checks if the stopping
criterion has been reached, produces
one individual sample, and then up-
date the estimation and the stopping
criterion.

Algorithm 1

Generic Adaptive Stopping Algorithm
Input: random variable X,
precision ω and confidence level ε
Output: (ω, ε)-estimation of µ = E(X)

1: t → 0
2: sample → {}
3: while ¬ stopping criterion do

4: t → t+ 1
5: sample → sample ↑ {xt}
6: µ̂t → mean_estimator(sample)
7: update stopping criterion
8: end while

9: return: µ̂t

The stopping criterion depends on the precision ω and the confidence level
ε, but also on the already accumulated sample at any step. This means that,
if built properly, the stopping criterion can continuously take into account the
knowledge which has been obtained about the system. Typically, the stopping
criterion will for instance stay unverified for longer if the elements of the sample
that have been produced up to a point have high variance.

Note that Algorithm 1 is fully agnostic with respect to how the samples are
generated. Not only that means it can be applied to a large variety of problems,
but also that it can be combined with any unique routine aimed at optimizing
the process of generating a sample element and that parallelization can easily
be implemented. Algorithm 1 is agnostic with respect to the actual estimation
process (the estimator) as well.

We now give a brief description of the two adaptive stopping algorithms which
led to our generalization.

Adaptive Stopping Algorithms Based on Concentration Inequalities 5

2.1 AdaSelect and EBStop

The AdaSelect algorithm [16], essentially follows the structure of the generic
Algorithm 1. It requires that X has finite range R and that µ = E(X) ↔= 0. It
derives its stopping criterion from the Hoe!ding inequality :

Theorem 1 (Hoe!ding Inequality). Let X1, ..., Xn be real-valued random

variables that are independent and identically distributed (i.i.d.) to a random

variable X with expected value µ = E(X), such that there exist a ↑ b with

P (a ↑ Xi ↑ b) = 1 for all i ↗ {1, ..., n}.

Then, for all ω > 0: P

(∣∣∣∣
1
n

n∑
i=1

Xi → µ

∣∣∣∣ ↓ ω

)
↑ 2 exp

(
→ 2nε2

(b→a)2

)
.

The derived stopping criterion is of the form |µ̂t| < ct, where µ̂t is the sample

mean (1/t)
∑

t

i=1 xi at step t, and ct is computed as (b→a)
√

log(t(t+1)/ϑ)
2t (1+1/ω).

Moreover, the authors gave a probabilistic upper bound for the size of the
sample generated by the improved version of their algorithm. If N is the size of
the sample which is generated by the algorithm, they showed that there exists a
constant C > 0 such that P

(
N > C R

2

ε2µ2 (log(2/ε) + log(R/(ωµ))
)
< ε.

The basic form of the EBStop algorithm [32], one of the current state-of-
the-art SAs, is similar to the AdaSelect algorithm. It also requires that X has
finite range R and that µ = E(X) ↔= 0. It derives its stopping criterion from the
Bernstein inequality :

Theorem 2 (Bernstein Inequality). Let X1, ..., Xn be real-valued random

variables that are independent and identically distributed (i.i.d.) to a random

variable X with expected value µ = E(X) and variance ϖ2 = V (X), with R > 0
such that P (|X → µ| < R) = 1.

Then, for all ω > 0: P

(∣∣∣∣
1
n

n∑
i=1

Xi → µ

∣∣∣∣ ↓ ω

)
↑ 2 exp

(
→ nε

2

2
3Rε+2ϖ2

)
.

In the final version of EBStop, the stopping criterion is made more complex and
symmetrical than in the case of AdaSelect. Nevertheless, it also relies on a sequence
of numbers ct with respect to which are compared the progressively better
estimations of µ. If ϖ̂2

t
is the sample variance at step t, and if (dt)t↑N is a sequence

such that ϱ↓
t=1dt ↑ ε, they can be computed as ϖ̂t

√
2 log(3/dt)

t
+ 3R log(3/dt)

t
.

The authors showed that it is possible to prove quasi optimality for the EBStop
algorithm, in the sense of the optimality which was proven for the AA algorithm,
another state-of-the-art SA [14]. While AA is limited to the class of random vari-
ables which are nonnegative, they proved that if N is the size of the sample which
is generated by AA, and ϖ the standard deviation of X, there exists a constant
C > 0 such that P

(
N > Cmax(ϖ2, ωµ)(1/ω2µ2) log(2/ε)

)
< ε. The authors also

showed that for any SA that can be applied to the same class of random variables,
if N ↔ is the size of the sample which is generated by the algorithm, there always
exists a constant C ↔ > 0 such that P

(
N ↔ < C ↔ max(ϖ2, ωµ)(1/ω2µ2) log(2/ε)

)
< ε.

6 Maxime Parmentier, Axel Legay

Therefore, for random variables which are bounded and nonnegative, any SA
will probabilistically require a sample size that is at best smaller than the one
which would have been produced by the AA algorithm by a fixed multiplicative
factor. For the EBStop algorithm, the theoretical bound is slightly less tight than
with the AA algorithm: if N is the size of the sample which is generated by the
algorithm, there exists a constant C > 0 such that P (N > Cmax((ϖ2/ω2µ2),
R/(ω|µ|))(log(1/ε) + log(R/(ω|µ|)))) < ε. This shows that the EBStop algorithm
scales almost as well as the AA algorithm, without being limited in its application
to nonnegative random variables. Moreover, it often does not significantly a"ect
the actual performance of the EBStop algorithm in practice [14]. EBStop has
been e"ectively exploited to solve subset selection problems [9], policy search
problems [18], and improve reinforcement learning strategies [19].

2.2 Concentration Inequalities

The statistical results on which AdaSelect and EBStop are based are what is called
concentration inequalities. A concentration inequality for a random variable X is
a bound on the probability that realizations of X are within a chosen distance of
a specific value. There exists a multitude of useful and well-known concentration
inequalities which can be applied to large classes of random variables, among
which are Markov’s inequality, Chebyshev’s inequality, and the Cherno" bound
(see appendix for more details).

A particularly important collection of concentration inequalities for sampling
and estimation algorithms are those that are specific to random variables Sn =
X1 + ...+Xn which can be decomposed as the sum of n independent random
variables, such as the random variables that follow a binomial distribution. The
Hoe"ding and the Bernstein inequalities belong to that group, among others such
as Azuma’s inequality, McDiamid’s inequality or Benett’s inequality.

For statistical model checking methods, the sampling can generally be assumed
to be independent and always be performed following a constant distribution:
simulations are executed independently of each other and the model’s behaviour
does not change from one simulation to another (nondeterminism put aside).
If the random variables X1, ..., Xn are independent and identically distributed
(i.i.d.), additional bounds can be derived, for instance from the central limit
theorem. Moreover, most classic concentration inequalities can be simplified and
enhanced under the assumption that the random variables X1, ..., Xn are i.i.d..
For those reasons, we focus on that setting and give the following definition.

Definition 2 (Concentration Inequality Function). Let X1, ..., Xn be real-

valued random variables that are independent and identically distributed (i.i.d.)

to a random variable X. A function FX : N+
0 ↘R+

0 ≃ R such that, for all n ↗ N0

and for all ω > 0:

P

(∣∣∣∣∣

n∑

i=1

Xi → E

(
n∑

i=1

Xi

)∣∣∣∣∣ ↓ ω

)
↑ FX(n, ω) (1)

is called a concentration inequality function for X.

Adaptive Stopping Algorithms Based on Concentration Inequalities 7

Proposition 1 links the notions of concentration inequality function and (ω, ε)-
estimation.

Proposition 1. Let X be a random variable of expected value µ = E(X). Let

X1, ..., Xn be random variables i.i.d to X. Let FX be a concentration inequality

function for X. Then, for all n ↗ N0 and for all ω > 0:

P

(∣∣∣∣∣
1

n

n∑

i=1

Xi → µ

∣∣∣∣∣ ↓ ω

)
↑ FX(n, nω)

Proof. Equation (1) with ω↗ = nω gives:

P

(∣∣∣∣∣

n∑

i=1

Xi → E

(
n∑

i=1

Xi

)∣∣∣∣∣ ↓ nω

)
↑ FX(n, nω)

However, since X1, ..., Xn are i.i.d. to X:

P

(∣∣∣∣∣

n∑

i=1

Xi → E

(
n∑

i=1

Xi

)∣∣∣∣∣ ↓ nω

)
=

P

(∣∣∣∣∣
1

n

n∑

i=1

Xi →
1

n

n∑

i=1

E(Xi)

∣∣∣∣∣ ↓ ω

)
=

P

(∣∣∣∣∣
1

n

n∑

i=1

Xi →
nµ

n

∣∣∣∣∣ ↓ ω

)

3 From Concentration Inequalities to Stopping Algorithms

The intuition behind our generalization of the AdaSelect and EBstop algorithms
is the following. A concentration inequality that is valid for a random variable
X (or a specific class of random variables) gives a bound to the probability
that a sample mean deviates from the expected value of X by a quantity larger
than ω > 0 (Proposition 1). This means that for any ω, someone performing a
Monte-Carlo estimation of µ = E(X) can directly know how likely it is that the
estimation does not possess the required precision, i.e. the confidence level of
the estimation, in function of the size of the sample which was used. Therefore,
to obtain an (ω, ε)-approximation of µ, one can successively produce (new and
independent) larger and larger samples, hoping that the values of the bounds even-
tually become smaller than the chosen ε. With the Hoe"ding’s inequality and the
Bernstein’s inequality, both of the corresponding concentration inequality func-
tions, F (n, ω) = 2 exp

(
→ 2ε2∑n

i=1(bi→ai)2

)
and F (n, ω) = 2 exp

(
→ ε

2

2V (Sn)+(2/3)εR

)
,

are such that F (n, nω) is (strictly) decreasing with respect to n and such that
limn↘↓ F (n, nω) = 0 (for any fixed ω). Therefore, with those two concentration
inequality functions, for any ε, this process of repeating Monte Carlo estimations
with larger and larger samples will always eventually terminate.

8 Maxime Parmentier, Axel Legay

Of course, such a strategy is not only impractical, it is extremely ine!cient.
Therefore, instead of blindly trying larger and larger sample sizes, we consider
the inverse problem of identifying a sequence of decreasing precision levels “ωt”
with the property that the series of the sequence F (t, tωt) reaches ε (for the
sake of readability and to avoid confusion, we’ll use the symbol ct instead of ωt
thereafter). Once found, that sequence ensures that for any cumulative sampling
with sample mean µt, the event E = {|µt→µ| ↑ ct for all t ↗ N0} happens with a
probability 1→ ε. The key and di!cult step is then to design a stopping criterion
based on those parameters ci, one that will only put an end to the sampling
process if the current sample mean µt is an (ω, ε)-estimation of µ (as soon as it is
the case, and not before), given that E holds.

3.1 Generalized Stopping Algorithm

Our main result shows how to systematically turn a decreasing sequence of
precision levels {ct}t↑N0 with the right properties into a valid stopping criterion
for a given concentration inequality function.

Theorem 3. Let X be a real-valued random variable with µ = E(X) ↔= 0, and

let FX be a concentration inequality function for X. Let be ω > 0 and ε > 0.
If there exist a sequence (ct)t↑N0 that is decreasing, with limt↘↓ ct = 0, and

such that for all t ↗ N0:

F (t, tct) =
ε

t(t+ 1)

Then Algorithm 2, GSA(X, ω, ε), outputs an (ω, ε)-estimation of µ, and does so

with a number of steps n that is minimal with probability 1→ ε.

Algorithm 2 Generalized Stopping Algorithm
Input:

random variable X, precision ω and confidence level ε
Output:

µ̂, an (ω, ε)-estimation of µ = E(X)

1: t → 0
2: sample → {}
3: while ¬

(
|µ̂t| ↓ ct(1

ω
+ 1)

)
do

4: t → t+ 1
5: sample → sample ↑ {xt}

6: µ̂t → 1
t

t∑
i=1

xi

7: update ct
8: end while

9: return: µ̂t

Adaptive Stopping Algorithms Based on Concentration Inequalities 9

Proof. To shorten the proof and lighten the notations, we make the unneeded
assumption that X is nonnegative.

The general case just involves additional steps because of necessary consider-
ations with absolute values.

We have to bound the sum of the two following probabilities by ε:

1. The probability that the stopping criterion is reached at a step t while µt is
not at a distance of at most µω of µ, i.e. the probability of a false positive.

2. The probability that the stopping criterion is not reached at a step t while
µt is at a distance of at most µω of µ, i.e. the probability of a false negative.

Let n be the smallest integer such that:

cn→1 > µω and cn ↑ µω

(cn→1 > |µ|ω and cn ↑ |µ|ω in the general case)

We want to show that the algorithm ends at step n with high probability.
Note that the integer n has to exist since the sequence (ct)t↑N0 is decreasing,
limt↘↓ ct = 0, and µ ↔= 0. Keep in mind that those two inequalities imply that
cn→1

ε
> µ and cn

ε
↑ µ.

1. First, let us show that the probability of a false postive, Pf+ , is smaller
than ε. First, note that if Pt is the probability that the stopping criterion is
reached at step t, we have:

Pf+ ↑
∑

1≃t<n

Pt

By the definition of the stopping criterion of the algorithm:

Pt ↑ P

(
1

t

t∑

i=1

Xi ↓ ct

(
1

ω
+ 1

))

However, with St =
t∑

i=1
Xi:

P

(
St

t
↓ ct

(
1

ω
+ 1

))
= P

(
St

t
↓ ct

(
1

ω

)
+ ct

)

Since c1 ↓ ... ↓ ct ↓ ... ↓ cn→1 ↓ µω:

P

(
St

t
↓ ct

(
1

ω
+ 1

))
↑ P

(
St

t
↓ µω

(
1

ω

)
+ ct

)

Therefore:
P

(
St

t
↓ ct

(
1

ω
+ 1

))
↑ P

(
St

t
↓ µ+ ct

)

In conclusion:

P

(
St

t
↓ ct

(
1

ω
+ 1

))
↑ P

(
St

t
→ µ ↓ ct

)

10 Maxime Parmentier, Axel Legay

Now, remember that FX is a concentration inequality function for X (Proposi-
tion 1):

Pf+ ↑
∑

1≃t<n

Pt ↑
∑

1≃t<n

P

(
1

t

t∑

i=1

Xi → µ > ct

)

↑
∑

1≃t<n

F (t, tct) ↑
∑

1≃t<n

ε

t(t+ 1)

Finally:

Pf+ ↑
∑

1≃t<n

ε

t(t+ 1)
↑

∑

1≃t

ε

t(t+ 1)
↑ ε

(
1→ 1

n

)

2. Now, let us show that the probability of a false negative, Pf→ , is smaller
than ε. Because of the definition of the stopping criterion, we have:

Pf→ ↑ P

(
Sn

n
↑ cn

(
1

ω
+ 1

))

However:
P

(
Sn

n
↑ cn

(
1

ω
+ 1

))
↑ P

(
Sn

n
↑ cn

ω
+ cn

)

↑ P

(
Sn

n
↑ µ+ cn

)
↑ P

(
Sn

n
→ µ ↑ cn

)

Since FX is a concentration inequality function for X:

Pf→ ↑ P

(
Sn

n
→ µ ↑ cn

)
↑ F (n, ncn) ↑

ε

n(n+ 1)

3. In conclusion, if P
f
+
→

is the probability to have a false positive or a false
negative:

P
f
+
→
↑ Pf+ + Pf→ ↑ ε

(
1→ 1

n

)
+

ε

n(n+ 1)
↑ ε

From the proof of the second claim of Theorem 3 directly follows Corollary 1,
which is the generalization of the corresponding results bounding the size of the
samples produced by AdaSelect and EBStop mentioned in Section 2.1.

Corollary 1. With the setting of Theorem 3, the GSA algorithm requires a

sample size of at most n with probability 1→ ε, with n being the smallest integer

such that cn ↑ µω.

Given a concentration inequality function, it is relatively easy to find a
sequence (ct)t↑N0 which verifies the conditions of Theorem 3 to generate a
specialized version of the GSA algorithm. As hinted by Proposition 1, it generally
su!ces to inverse (with respect to ω) the function F (t, tω) around its image
ε/(t(t + 1)), for all t ↗ N0. For instance, with Hoe"ding’s inequality, this is a
straightforward computation which can even be completed symbolically: with R

Adaptive Stopping Algorithms Based on Concentration Inequalities 11

the range of X, exp
(
→2(tct)2/tR2

)
= ε/(2t(t+ 1)). If we isolate ct, we obtain

the formula ct = R
√

((1/2t) ln ((t(t+ 1))/ε)), which is exactly the formula for
the parameters of the stopping criterion of AdaSelect.

When an explicit expression for the parameters ct can be derived, Corollary 1
can additionally be used to provide an explicit bound on the size of the generated
samples, similar to those given for AdaSelect and EBStop in Section 2.1. However,
having access to an explicit formula for those parameters is not absolutely needed
to make use of the GSA algorithm, for they can always be computed numerically
if needed (e.g. this would be necessary to find the parameters ct associated with
Benett’s inequality). Moreover, the computation of those parameters can be
performed in parallel to the generation of the simulations. Furthermore, once
they have been determined (up to a certain point), they can be stored and reused
afterwards (even with other values for the precision ω, as they only depend on ε
and the properties of X).

Lastly, depending on the concentration inequality function, it might happen
that the functions F (t, tω) are only decreasing bijections (with respect to ω, for a
fixed t) when restricted to a small enough interval around 0, and only for large
enough t. In that case, the sequence of parameters ct might need to start at an
index t↗ > 1 rather than with index 1. However, this purely technical problem can
only arise when considering very large ω and computing estimations which require
very small sample sizes. Initializing the SA with a sample of size t↗ (rather than
1) and starting with the t↗-th iteration of the main loop is the easiest technical
solution to that problem. Its only downside is to make the algorithm slightly
overshoot in the case of the most trivial estimations.

3.2 Geometric Sampling and Bilateral Testing

The basic Algorithm 2 can be improved and optimized in the same way that
the basic AdaSelect and the basic EBStop algorithms can be upgraded to the
geometric AdaSelect and the EBGStop algorithms. The underlying optimization is
based on the idea that checking if the stopping criterion has been reached at every
step of the execution of the algorithm is rarely useful, and serves no purpose as
long as that stopping criterion is far from being verified. A geometric progression
in how the sample is grown can instead be used, with ⇐gt⇒ elements added at
step t, for some g > 1. On one hand, choosing a large geometric parameter g can
significantly speed up the algorithm, especially when large samples are needed
and simulation times are low. Moreover, it can also significantly lower the number
of parameters ct which needs to be computed. On the other hand, it can have the
undesirable consequence of forcing the algorithm to generate slightly too many
samples, by an order of the multiplicative factor g.

Additionally, a bilateral reformulation of the stopping criterion of Algo-
rithm 2, similar to the bilateral reformulation of the stopping criterion of
EBStop can be implemented. With LBt = max(0,max1≃s≃t(|µs| → cs)) and
UBt = min1≃s≃t(|µs|+cs), the stopping criterion can be rewritten as (1+ω)LBt ↓
(1→ ω)UBt (see [32] for details). This can make it easier to deal with nonnegative
random variables.

12 Maxime Parmentier, Axel Legay

4 Experiments

To analyze the applicability and the performance of GSA (Algorithm 2), we
decided to focus on the setting of estimating “extreme” probabilities, i.e. proba-
bilities very close to 0 or 1. This is called the rare event problem.

In SMC, a common strategy to check whether a system verifies one of its
requirements is to estimate the probability p that the property will hold true for
a random possible execution or specification of the system. This can be done,
for instance, by representing the system as a Markov decision process and the
property as a formula of a variant of temporal logic [13,15,20,35].

Since only the success or the failure of the system for each simulation matters,
the complexity of the (model of) the system does not matter for any estimation
algorithm whose operation is independent of the way each of those simulations is
performed and deemed a success or a failure. The verification task is thus reduced
to the estimation of the expected value of a random variable X which follows
a Bernoulli distribution. More precisely, we focused on the task of estimating
p = µ = E(X) with X ⇑ B(p), with absolute precision ω and a confidence level
of ε.

The rare event problem has already been widely studied over the years.
Importance sampling [23,25] and importance splitting [22,24,25,36] are the two
classic approaches. Importance sampling corresponds to the modification of the
distribution of the random variable whose expected value must be estimated,
i.e. the introduction of a bias towards successful or failing simulations that is
compensated later on. Importance splitting corresponds to the reformulation of
the property which needs to be verified into several more likely properties, so
that the probability of the rare event can eventually be estimated as the product
of their intermediate probabilities.

As SAs are nothing but statistical algorithms that minimize the sample size
without trying to optimize how the samples are produced or the parameters are
estimated, we do not expect what we expose below to outperform those advanced
strategies by itself. However, specifically because SAs are agnostic with respect
to those processes, they could actually be combined with importance sampling
and importance splitting to improve their e"ectiveness.

4.1 A Stopping Algorithm for Bernoulli Distributions

We compared a basic Monte Carlo approach and a standard sample size estimation
method used in multiple SMC tools with AdaSelect, EBStop and three variants
of GSA: GSAH , GSAB and GSAC . Those three algorithms were respectively
obtained from Hoe"ding’s inequality, Bernstein’s inequality and a specialized
version of the Cherno" bound.

The Monte Carlo algorithm MC uses Chebyshev’s inequality to determine a

priori the sample size it needs to compute an estimation of p with an absolute
precision ω and a confidence level ε. For a sample of size n, Chebyshev’s inequality
ensures that P (|Sn/n → E(Sn/n)| ↓ ω) ↑ V (Sn/n)

ε2
. Since X follows a Bernoulli

Adaptive Stopping Algorithms Based on Concentration Inequalities 13

distribution, V (X) ↑ 1/4. Therefore, as V (Sn/n) ↑ 1/4n, a naive guess for the
minimal sample size that is required for the estimation is the smallest integer n
such that 1/4nω2 ↑ ε, i.e. such that 1/4εω2 ↑ n.

For a less naive point of comparison, we considered the sample size estimation
formula that is derived from a concentration inequality which was designed for
Bernoulli distributions [33]: n ↓ ln

(
2
ϑ

)
/(2ω2). It is for instance implemented in

PRISM as the APMC (Approximate Probabilistic Model Checking) method [21]
and used in PLASMA (Platform for Learning and Advanced Statistical Model
checking Algorithms) [30] for the Smart Sampling algorithm [17,35].

GSAH , GSAB are theoretically equivalent to AdaSelect and EBStop. To find a
true challenger, we therefore needed to start with a concentration inequality that
holds for the random variables which follow a Bernoulli distribution specifically,
ideally one which depends on the variance. It turns out that the Cherno" bound
can be specialized and simplified for that class of simple random variables,
in multiple ways [11,17,33]. In particular, we used the following version [11]
to build GSAC : if X1, ..., Xn are i.i.d to X with 0 ↑ |X| ↑ 1, then for any
0 ↑ k ↑ 2ϖn: P (|Sn → E(Sn)| ↓ kϖn) ↑ 2 exp(→k2/4) (with Sn = X1 + ...+Xn)
and ϖn = ϖ(Sn)). For any ω ↑ 2(ϖn)2, this gives us the concentration inequality:

P (|Sn → E(Sn)| ↓ ω) ↑ 2 exp(→ω2/4(ϖn)
2)

Theorem 3 applied with the associated concentration inequality function
produces a stopping algorithm GSAC whose parameters ct are of the form
(2ϖt/t)

√
ln(t(t+ 1)/ε), i.e. (2ϖ(Xt)/

⇓
t)
√
ln(t(t+ 1)/ε). This shows that GSAC

can take advantage of a low variance like GSAB and EBStop, but its parameters
decrease at a faster rate.

Finally, we added small optimizations to the implementations of the SAs.
First, as the goal is to estimate extreme probabilities, we force the algorithms to
generate simulations at the start until they can initialize with a sample containing
at least one success and one failure. Second, we estimate in parallel E(X) and
E(1→X) to deal with probabilities close to 0 just as well as with probabilities
close to 1 without making any assumption about the extreme nature of p. This
is justified by the fact that, if p̂ is an (ω, ε)-estimation of p, since p ↑ 1, we
automatically have P (|p→ p̂| < ω) ↓ 1→ ε.

4.2 Results

Table 1, Table 2 and Table 3 show the order of magnitude of the (average) sample
sizes for six (ω, ε) configurations with ω, ε and p ranging from 10→3 to 10→6 (and
down to 10→9 for ε). As the results for GSAH and GSAB were very similar to
those of AdaSelect and EBStop, we do not report them.

14 Maxime Parmentier, Axel Legay

Table 1. Average sample sizes for MC, AdaSelect (GSAH), EBStop (GSAB) and GSAC

ε = 0.001, p = 0.001

ω MC APMC AdaSelect EBStop GSAC

10→3 2.5 · 108 3.8 · 106 2 · 107 2.3 · 105 1.2 · 105
10→4 2.5 · 1010 3.8 · 108 2.5 · 109 1 · 107 1.6 · 107
10→5 2.5 · 1012 3.8 · 1010 > 1010 1 · 109 1.7 · 109

Table 2. Average sample sizes for MC, AdaSelect (GSAH), EBStop (GSAB) and GSAC

ω = 0.001, p = 0.001

ω MC APMC AdaSelect EBStop GSAC

10→3 2.5 · 108 3.8 · 106 2 · 107 2.3 · 105 1.2 · 105
10→6 2.5 · 1011 7.2 · 106 2.4 · 107 2.7 · 105 1.4 · 105
10→9 2.5 · 1014 1 · 107 2.8 · 107 3 · 105 1.9 · 105

Table 3. Average sample sizes for MC, AdaSelect (GSAH), EBStop (GSAB) and GSAC

x = ω = ε = p

ω MC APMC AdaSelect EBStop GSAC

10→3 2.5 · 108 3.8 · 106 2 · 107 2.3 · 105 1.2 · 105
10→4 2.5 · 1011 5 · 108 2.6 · 109 2.5 · 106 1.5 · 106
10→5 2.5 · 1014 6.1 · 1010 > 1010 2.3 · 107 1.7 · 107
10→6 2.5 · 1017 7.3 · 1012 > 1011 3.5 · 108 2 · 108

The SAs scale proportionally to 1/ω and proportionally to ln(1/ε). This is
consistent with the theoretical bounds for AdaSelect and EBStop (see Section 2.1)
and the structure of the stopping criterion of Algorithm 2. All SAs require much
smaller samples than the Monte Carlo method. AdaSelect clearly su"ers from not
being able to exploit the small variances. GSAC outperforms EBStop in all cases,
except when the probability to estimate (and thus the variance) is relatively
large with respect to ω. When it matters the most however, with very small ω, ε
and p, the reduction in sample size that GSAC o"ers is substantial (→43%). The
parallelization of the two algorithms appears to be the optimal strategy.

5 Conclusion and Future Work

We showed how stopping algorithms can be valuable assets for SMC by minimiz-
ing the size of the samples which are needed for the estimation of parameters.
The generalization of the AdaSelect and EBStop algorithms allowed us to provide
a systematic method to generate tailor-made stopping algorithms from concen-
tration inequalities. Our main contribution, Theorem 3, can be exploited to
improve the e!ciency of SMC methods for specific settings, such as the rare
event problem.

Adaptive Stopping Algorithms Based on Concentration Inequalities 15

We see multiple possible paths of exploration to expand this work. From a
theoretical perspective, improving the structure of Algorithm 2 and optimizing
its geometric version seems to be a promising prospect. If the result used to
minimize the drawback of geometric sampling in the case of EBStop [2] could be
generalized, this could improve the performance of the geometric version of GSA.
Theorem 3 could also maybe be duplicated for the estimation of the variance of
random variables, rather than their expected value. The Efron–Stein inequality
could be a good starting point.

In terms of application, we want to specialize the GSA algorithm for more
ambitious classes of random variables, again hoping that those specialized SAs
could outclass the generally (quasi) optimal algorithms AA and EBStop. For
instance, if the quantity X which needs to be estimated is itself the outcome of
a repeated process inside a system, a normal distribution could be assumed for
X, potentially allowing for stronger results. Even more ambitiously, we want to
determine whether it would be possible to automatize to process of deriving a
system specific concentration inequality directly from the structure of the model
of that system, which would result in a tool able to produce tailor-made SAs for
individual systems without any input needed from the user.

Acknowledgements

M. Parmentier is funded by a FNRS PhD Grant and by the UCLouvain.
A. Legay is funded by a FNRS PDR - T013721.

References

1. Agha, G., Palmskog, K.: A survey of statistical model checking. ACM Transactions
on Modeling and Computer Simulation (TOMACS) 28(1), 1–39 (2018)

2. Audibert, J.Y., Munos, R., Szepesvári, C.: Variance estimates and exploration
function in multi-armed bandit. In: CERTIS Research Report 07–31. Citeseer
(2007)

3. Baier, C., Katoen, J.P.: Principles of model checking. MIT press (2008)
4. Basile, D., ter Beek, M.H., Ferrari, A., Legay, A.: Exploring the ertms/etcs full

moving block specification: an experience with formal methods. International
Journal on Software Tools for Technology Transfer 24(3), 351–370 (2022)

5. Behrmann, G., David, A., Larsen, K.G.: A tutorial on uppaal. Formal methods for
the design of real-time systems pp. 200–236 (2004)

6. Boucheron, S., Lugosi, G., Bousquet, O.: Concentration inequalities. In: Summer
school on machine learning, pp. 208–240. Springer (2003)

7. Bowman, H., Faconti, G., Katoen, J.P., Latella, D., Massink, M.: Automatic
verification of a lip-synchronisation protocol using uppaal. Formal Aspects of
Computing 10, 550–575 (1998)

8. Broy, M., Jonsson, B., Katoen, J.P., Leucker, M., Pretschner, A.: Model-based
testing of reactive systems. In: Volume 3472 of Springer LNCS. Springer (2005)

9. Busa-Fekete, R., Szorenyi, B., Cheng, W., Weng, P., Hüllermeier, E.: Top-k selection
based on adaptive sampling of noisy preferences. In: International Conference on
Machine Learning. pp. 1094–1102. PMLR (2013)

16 Maxime Parmentier, Axel Legay

10. Casella, G., Berger, R.L.: Statistical inference. Cengage Learning (2021)
11. Chung Graham, F., Lu, L.: Complex graphs and networks american mathematical

society (2006)
12. Clarke, E.M., Klieber, W., Nová!ek, M., Zuliani, P.: Model checking and the state

explosion problem. In: LASER Summer School on Software Engineering, pp. 1–30.
Springer (2011)

13. Clarke, E.M., Zuliani, P.: Statistical model checking for cyber-physical systems. In:
International symposium on automated technology for verification and analysis. pp.
1–12. Springer (2011)

14. Dagum, P., Karp, R., Luby, M., Ross, S.: An optimal algorithm for Monte Carlo
estimation. SIAM Journal on computing 29(5), 1484–1496 (2000)

15. Ding, X., Smith, S.L., Belta, C., Rus, D.: Optimal control of Markov decision
processes with linear temporal logic constraints. IEEE Transactions on Automatic
Control 59(5), 1244–1257 (2014)

16. Domingo, C., Gavalda, R., Watanabe, O.: Adaptive sampling methods for scaling up
knowledge discovery algorithms. Data Mining and Knowledge Discovery 6, 131–152
(2002)

17. D’Argenio, P., Legay, A., Sedwards, S., Traonouez, L.M.: Smart sampling for
lightweight verification of Markov decision processes. International Journal on
Software Tools for Technology Transfer 17, 469–484 (2015)

18. Heidrich-Meisner, V., Igel, C.: Hoe"ding and Bernstein races for selecting policies in
evolutionary direct policy search. In: Proceedings of the 26th Annual International
Conference on Machine Learning. pp. 401–408 (2009)

19. Heidrich-Meisner, V., Igel, C.: Neuroevolution strategies for episodic reinforcement
learning. Journal of Algorithms 64(4), 152–168 (2009)

20. Henriques, D., Martins, J.G., Zuliani, P., Platzer, A., Clarke, E.M.: Statistical model
checking for Markov decision processes. In: 2012 Ninth international conference on
quantitative evaluation of systems. pp. 84–93. IEEE (2012)

21. Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate probabilistic
model checking. In: Verification, Model Checking, and Abstract Interpretation:
5th International Conference, VMCAI 2004 Venice, Italy, January 11-13, 2004
Proceedings 5. pp. 73–84. Springer (2004)

22. Jegourel, C., Legay, A., Sedwards, S.: Importance splitting for statistical model
checking rare properties. In: Computer Aided Verification: 25th International
Conference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings 25.
pp. 576–591. Springer (2013)

23. Kahn, H.: Random sampling (Monte Carlo) techniques in neutron attenuation
problems. i. Nucleonics (US) Ceased publication 6(See also NSA 3-990) (1950)

24. Kahn, H., Harris, T.E.: Estimation of particle transmission by random sampling.
National Bureau of Standards applied mathematics series 12, 27–30 (1951)

25. Kahn, H., Marshall, A.W.: Methods of reducing sample size in Monte Carlo com-
putations. Journal of the Operations Research Society of America 1(5), 263–278
(1953)

26. Kwiatkowska, M., Norman, G., Parker, D.: Prism: Probabilistic model checking for
performance and reliability analysis. ACM SIGMETRICS Performance Evaluation
Review 36(4), 40–45 (2009)

27. Kwiatkowska, M., Norman, G., Sproston, J., Wang, F.: Symbolic model checking
for probabilistic timed automata. Information and Computation 205(7), 1027–1077
(2007)

Adaptive Stopping Algorithms Based on Concentration Inequalities 17

28. Larsen, K.G., Legay, A.: Statistical model checking: past, present, and future. In:
Leveraging Applications of Formal Methods, Verification and Validation: Foun-
dational Techniques: 7th International Symposium, ISoLA 2016, Imperial, Corfu,
Greece, October 10–14, 2016, Proceedings, Part I 7. pp. 3–15. Springer (2016)

29. Legay, A., Lukina, A., Traonouez, L.M., Yang, J., Smolka, S.A., Grosu, R.: Sta-
tistical model checking. In: Computing and software science: state of the art and
perspectives, pp. 478–504. Springer (2019)

30. Legay, A., Sedwards, S., Traonouez, L.M.: Plasma lab: a modular statistical model
checking platform. In: International Symposium on Leveraging Applications of
Formal Methods. pp. 77–93. Springer (2016)

31. Lindahl, M., Pettersson, P., Yi, W.: Formal design and analysis of a gear controller.
In: International Conference on Tools and Algorithms for the Construction and
Analysis of Systems. pp. 281–297. Springer (1998)

32. Mnih, V., Szepesvári, C., Audibert, J.Y.: Empirical Bernstein stopping. In: Pro-
ceedings of the 25th international conference on Machine learning. pp. 672–679
(2008)

33. Okamoto, M.: Some inequalities relating to the partial sum of binomial probabilities.
Annals of the institute of Statistical Mathematics 10, 29–35 (1959)

34. Pappagallo, A., Massini, A., Tronci, E.: Monte Carlo based statistical model checking
of cyber-physical systems: A review. Information 11(12), 588 (2020)

35. Parmentier, M., Legay, A., Chenoy, F.: Optimized smart sampling. In: International
Conference on Bridging the Gap between AI and Reality. pp. 171–187. Springer
(2023)

36. Rosenbluth, M.N., Rosenbluth, A.W.: Monte Carlo calculation of the average
extension of molecular chains. The Journal of Chemical Physics 23(2), 356–359
(1955)

37. Sen, K., Viswanathan, M., Agha, G.: On statistical model checking of stochastic
systems. In: Computer Aided Verification: 17th International Conference, CAV
2005, Edinburgh, Scotland, UK, July 6-10, 2005. Proceedings 17. pp. 266–280.
Springer (2005)

38. Wasserman, L.: All of statistics: a concise course in statistical inference. Springer
Science & Business Media (2004)

39. Zuliani, P., Platzer, A., Clarke, E.M.: Bayesian statistical model checking with
application to simulink/stateflow verification. In: Proceedings of the 13th ACM
international conference on Hybrid systems: computation and control. pp. 243–252
(2010)

18 Maxime Parmentier, Axel Legay

Appendix: Concentration Inequalities

This is a nonexhaustive list of some of the most well-known and useful concen-
tration inequalities. Most of them are regarded as relatively elementary results
in statistics [6,38,10].

Let X be a random variable.
– Markov’s inequality (X must be almost surely nonnegative):

⇔ω > 0 : P (X ↓ ω) ↑ E(X)

ω

– Chebyshev’s inequality (E(X) and V (X) must be finite):

⇔ω > 0 : P (|X → E(X)| ↓ ω) ↑ V (X)

ω2

– Cherno" bound (the moment generating function of X, MX(t) = E(etX),
must be well-defined and finite):

⇔ω > 0 : P (X ↓ ω) ↑ E(etX)

etε

Now let X = Sn = X1 + ... + Xn be the sum of n independent random
variables, with each Xi almost surely bounded within [ai, bi]. Let Ri = bi → ai be
the range of Xi. Let be R = max

1≃i≃n

(Ri).

– Hoe"ding’s inequality:

⇔ω > 0 : P (|Sn → E(Sn)| ↓ ω) ↑ 2 exp

(
→ 2ω2∑

n

i=1(bi → ai)2

)

– Bernstein’s inequality:

⇔ω > 0 : P (|Sn → E(Sn)| ↓ ω) ↑ 2 exp

(
→ ω2

2V (Sn) + (2/3)ωR

)

– Both Azuma’s Inequality and McDiamid’s inequality are equivalent to Ho-
e"ding’s inequality with those assumptions:

⇔ω > 0 : P (|Sn → E(Sn)| ↓ ω) ↑ 2 exp

(
→ 2ω2∑

n

i=1(bi → ai)2

)

– Benett’s inequality (with f(x) = (1 + x) log(1 + x)→ x):

⇔ω > 0 : P (|Sn → E(Sn)| ↓ ω) ↑ 2 exp

(
→V (Sn)

R2
f

(
ωR

V (Sn)

))

Additionally, if the random variables X1, ..., Xn are independent and identi-
cally distributed (i.i.d.), the central limit theorem itself can be interpreted as
a concentration inequality: as n grows, Sn → E(Sn) can be approximated with
Z ↖ N (0, V (Sn)), which implies:

⇔ω > 0 : P (|Sn→E(Sn)| ↓ ω) ⇑ P (|Z| ↓ ω) = 2

↓∫

ε

1√
2ςV (Sn)

exp

(
→ x2

2V (Sn)

)
dx

	Adaptive Stopping Algorithms Based on Concentration Inequalities

