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Abstract. Modern model checking tools like UPPAAL Stratego pro-
vide a rich framework for modeling cyber-physical systems involving
non-determinism as well as time, stochastic and continuous state de-
scriptors. A key objective is to design controllers for such systems that
optimize a given objective, e.g., minimizing energy consumption. At an
abstract level, the controller design problem can be cast as optimizing a
strategy in a continuous (Euclidean) Markov decision process. Partition-
ing the continuous state space is a simple yet e↵ective strategy to solve
this optimization problem in a flexible, non-parametric manner. In pre-
vious work we have introduced a reinforcement learning strategy under
an undiscounted cost objective on dynamically refined partitions, and we
have analyzed at the semantic level approximations of Euclidean MDPs
by Imprecise MDPs. In this paper we are extending the approximation
analysis to discounted and average cost objectives, and we are moving
to close the gap between the theoretical analysis and the practical rein-
forcement learning approach. We introduce several alternative simulation
strategies that on the one hand maintain approximation guarantees as
the granularity of the partitioning increases, and on the other hand turns
our learning scenario into a standard Q-learning procedure.

1 Introduction

Modern model-checkers (e.g. PRISM [22], STORM [9, 14], MODEST [15], KeY-
maeraX [27], UPPAAL Stratego [23, 8]) are increasingly having a focus on in-
tegration of state-of-the-art reinforcement learning (RL) and model checking
(MC) [25]. In this e↵ort RL is leveraged to e�ciently construct near-optimal
control strategies while model checking techniques are used to give absolute [7],
probabilistic [3, 2] or statistical guarantees [13] of crucial safety properties.

Most importantly, the existing model checkers o↵er a variety of rich and ma-
ture modelling formalisms for defining Markov decision processes (MDPs) that
may be used to run simulations for the o↵-line training of RL policies. Compared
to traditional RL scenarios this allows for a number of additional capabilities,
e.g. in terms of “targeted sampling” of initial states, rare configurations, etc.
The modelling formalisms range from finite state MDPs (STORM, PRISM) to
continuous-space (Euclidean) Markov decision processes (EMDPs) (MODEST,
UPPAAL Stratego) and Simulink (KeYmaeraX). For continuous-space models
abstractions are often used in order to obtain the required guarantees [17, 7].



Most of the above integrations of RL and model checking rely on external
components for the RL training (e.g. Open Gym [14] and Simulinks RL Tool-
box [17]). In contrast, the tool UPPAAL Stratego o↵ers its own RL method for
continuous-space MDPs [20]. Here the learning method is based on a dynamic
partition-refinement approach for function approximations providing high flexi-
bility regarding the types of functions that can be approximated, but also closely
aligns with continuous-time model-checking techniques, so-called zones.

The RL method of UPPAAL Stratego has already been applied for the con-
struction of near-optimal controllers in a number of industrial applications in-
cluding tra�c-lights [10], water management [11, 12], floor heating systems [24],
heat-pumps [16], as well as distributed fleets of autonomous mobile robots [5].

However, the proven practical usefulness of the system is not fully comple-
mented by theoretical guarantees. The RL approach in UPPAAL Stratego is
based on sampled runs in the continuous state space. This, and the interleav-
ing with partition-refinement steps, means that classic convergence guarantees
for RL [19] in finite state spaces are not directly applicable to this approach.
In [21] we have started to develop theoretical underpinnings of the UPPAAL
Stratego approach by using imprecise Markov decision processes (IMDPs) to
formalize partition-based abstractions, and to approximate EMDPs by standard
finite state MDPs that provide upper and lower bounds on the cost function of
the EMDP.

This paper extends this work with two main contributions:

– we extend our earlier approximation analysis to average cost objective, which
are particularly pertinent for many cyber-physical system applications, yet
require a treatment that is very di↵erent from discounted and undiscounted
cost objectives;

– we show how strategy synthesis for EMDPs can be performed by standard
Q-learning on finite state approximations; in particular, we establish for
di↵erent cost objectives di↵erent types of near-optimality guarantees for
learned strategies, and we introduce a hierarchy of simulation capabilities
of system models, which enable di↵erent types of learning and optimization
approaches.

Related Work

Numerous works consider abstraction of MDPs over infinite (continuous) state
spaces by finite state systems, both in the context of formal verification [26] and
reinforcement learning[31, 30]. While the construction of abstractions is quite
similar to ours, the underlying purpose, and hence the theoretical analysis, of the
abstractions is quite di↵erent: in [26] the main concern is the approximation of
probabilities of path properties expressed in temporal logic. Moreover, the focus
is on bounded time horizons. This is quite di↵erent from our focus on minimizing
costs over unbounded horizons. The problem of using learning approaches for
strategy synthesis is described as an area for future research in [26].
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In contrast, [31, 30] are concerned with reinforcement learning in finite state
abstractions of MDPs over metric spaces. In [30] this includes an approach for
adaptive refinement of the partitions during learning, which is closely related to
our approach presented in [20]. A main di↵erence between our work and [31, 30]
is a di↵erent learning setting reflected in a di↵erent objective: [31, 30] focus
on minimizing regret over a fixed time horizon, i.e., the di↵erence between the
expected rewards received during training over a fixed period of time, and the
expected rewards under an optimal policy. This is the most appropriate criterion
in online learning settings. In our context, we assume that we can learn from
unlimited simulation data in an o✏ine setting, and the goal is to learn an optimal
strategy for use in later deployment of the system.

2 Euclidean MDPs

We start by introducing our continuous state space system model. The definitions
in this and the following section mostly follow [21], but with a few simplifica-
tions that only incur a loss of non-essential generality. The following definition
is closely related to the stochastic hybrid systems of [26], and is a special case
of MDPs over Borel spaces[1]. In the following we assume familiarity with some
basic concepts of measure theory and Markov processes. The most relevant fun-
damental concepts are also reviewed in Appendix A.

Definition 1 (Euclidean Markov Decision Processes). A Euclidean Markov
decision process (EMDP) is a tuple M = (S,Act ,T , C) where:

– S ✓ RK is a compact subset of the K-dimensional Euclidean space equipped
with the Borel �-algebra B(S).

– Act is a finite set of actions,
– T : S ⇥Act ⇥ B(S) ! [0, 1] defines for every a 2 Act a transition kernel on

(S,B(S)), i.e., T (s, a, ·) is a probability distribution on B(S) for all s 2 S,
and T (·, a,B) is measurable for all B 2 B(S).

– C : S⇥Act ! [0, cmax] is a cost-function for state-action pairs, such that for
all a 2 Act: C(·, a) is measurable, and cmax is a global upper bound on costs.

Example 1. The following toy example describes a moving agent in a square in
the 2d-plane. Let S = [�1, 1] ⇥ [�1, 1], Act = {right, left, up, down}. We asso-
ciate with the actions expected transitions of length 0.3 in the corresponding
directions, given by vectors v(right) = (0.3, 0), . . . , v(down) = (0,�0.3). For
(x, y) 2 S and a 2 Act , let T ((x, y), a, ·) be the distribution on B(S) de-
fined as clip(N((x, y) + v(a), 0.003)), where N(. . .) is a Gaussian distribution
with mean (x, y) + v(a) and diagonal covariance matrix with values 0.003, and
clip((x, y)) := (max{�1,min{1,x}}, max{�1,min{1, y}}) ensures that the re-
sult stays in S. Figure 1 on the left shows for the state s = (0.8, 0.7) (marked
by a black +) samples of 500 successor states according to T (s, a, ·) for each
a 2 Act . The cost function

C((x, y), right) = 2 ⇤ (x2 + y2) + 0.6(1� x) (1)
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Fig. 1: Sampled successor states and strategy in Example 1 and Example 2

consists of two elements: a cost proportional to the squared Euclidean distance
to the origin, and a cost that is inversely proportional to the e↵ectiveness of
the action right : at x = 1 it is impossible to move to the right, and the cost
component 0.6(1�x) here is zero. The cost then linearly increases for decreasing
x. The costs for actions left,up,down are defined analogously with the same
2 ⇤ (x2 + y2) term, but with (1 � x) replaced by (1 + x), (1 � y) and (1 + y),
respectively.

We are mostly concerned with EMDPs that satisfy the following continuity
conditions. In this definition we denote with dtv the total variation distance
between distributions.

Definition 2 (Continuous EMDP). A Euclidean MDP M is continuous if

– For each ✏ > 0 there exists � > 0, such that for all s, s0 2 S, a 2 Act:
k s� s0 k< � ) dtv(T (s, a, ·),T (s0, a, ·))  ✏.

– C(·, a) is continuous on S for all a 2 Act.

The EMDP of Example 1 is continuous. A run ⇡ of an MDP is a sequence
of alternating states and actions s0a0s1a1s2a2 . . .. A state-run is a sequence of
states s0, s1, . . .. An initial segment s0a0 . . . stat of a run is denoted ⇡0:t.

Definition 3 (Strategy). A (memoryless, stationary, deterministic) strategy
for an MDP M is a function � : S ! Act, mapping states to actions, such that
for every a 2 Act the set {s 2 S|�(s) = a} is measurable.

A fixed strategy � turns an EMDP into a Markov process whose transition
kernels we denote by T�(s, ·). Together with an initial state s0 = s the transition
kernel defines a probability distribution Ps,� over state runs (see Appendix A
for details). The strategy being deterministic, a state-run induces a unique run.
Depending on context, we therefore also view Ps,� as a distribution over runs.
Finally, for k � 1, we denote by T k

� the transition kernel representing k successive
transitions according to T�, and by P k

s,� the distribution of the k’th state in a
run.
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Definition 4 ((Expected) Cost). We consider four di↵erent types of expected
costs. The first three types are defined by first defining the undiscounted, dis-
counted and path-average costs of individual runs ⇡:

Cu(⇡) =
X

i�0

C(si, ai), (2)

C�(⇡) =
X

i�0

�iC(si, ai) (� 2 (0, 1)), (3)

Cp�avg(⇡) = lim sup
N!1

1/N
NX

i=0

C(si, ai). (4)

Given a strategy � and initial state s, the expected cost Es,�[C] then is the
expectation of the cost of ⇡ under the distribution Ps,�. A common alternative
definition of expected average cost is given by

Es,�[Ce�avg] := lim sup
N!1

Es,�[1/N
NX

i=0

C(si, ai)]. (5)

For any type of cost C, when min� Es,�[C] exists, then this is referred to as the
expected cost of s, denoted Es[C].

Example 2. (Example 1 continued). Figure 1 on the right shows a strategy for
the EMDP of Example 1. This strategy was learned using the partitioning ap-
proach described in Section 3, and is constant on small (measurable) squares
that partition the state space S (see Example 6 below for more details). The
strategy is optimized for C� with � = 0.6. It consists of trying to move into
the middle of the state space, except for positions very close to the boundaries,
where it is preferable to minimize the short-term action-related costs over the
long-term benefit of minimizing the state-related cost in the future.

Of the two versions of expected average cost the more commonly used version
is Ce�avg (e.g. used in [28]). The following example illustrates possible discrepan-
cies between the two versions, and motivates our preference for the path-average
version. However, as we shall see below, in important classes of models that we
will focus on in the sequel, the two versions actually coincide. For ease of expo-
sition, the example is based on a MDP with an infinite countable state space,
not an EMDP in our sense.

Example 3. Let S = Z, Act = {z,m}. Transition probabilities are defined as
follows: T (0, z, 0) = 1, T (0,m, 1) = T (0,m,�1) = 0.5. For all states other
than 0, both actions z and m have the same, deterministic e↵ect: for i � 1:
T (i, z, i + 1) = T (i,m, i + 1) = 1; for i  �1: T (i, z, i � 1) = T (i,m, i � 1) = 1.
The cost is defined as follows: C(0, z) = 1, C(0,m) = 0. For i � 1 the cost is
independent of the action: C(i) = 10 if 2k  i < 2k+1 with k odd, and C(i) = �10
if 2k  i < 2k+1 with k even. Finally, for i  �1: C(i) = �C(�i).
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Fig. 2: Cost paths under the m strategy in Example 3.

If one takes action m at state 0, then with probability 0.5 the resulting state
path is 0, 1, 2, 3, . . . (regardless of which actions are taken from the second step
onwards), and with probability 0.5 it is 0,�1,�2,�3, . . .. Figure 2 shows the

development of the average cost 1/N
PN

i=0 C(si) along these two paths. At N =
2k+1�1 with k odd, then one easily obtains a (crude) lower bound of 3 (marked
by the horizontal red line in Figure 2) for the average cost on the 0, 1, 2, . . .
path, and similarly at even k for the 0,�1,�2, . . . path. Thus, with probability
1, lim supN Cp�avg(⇡) > 3, and hence E0,m[Cp�avg] � 3, where m denotes any
policy that selects action m at state 0. On the other hand, by the symmetries
of the cost and transition probability definitions: E0,m[1/N

PN
i=0 C(si)] = 0 for

all N , and therefore lim supN E0,m[
PN

i=0 C(si, ai)] = 0. For any policy that takes
action z at 0, on the other hand, both versions of average cost coincide, and
yield a cost of 1. Thus, under Cp�avg the strategy is preferred that takes action
z at 0, whereas under Ce�avg action m is preferred.

We would argue that Ce�avg is sensible when one is interested in optimizing
a strategy that is to be implemented for multiple, independently running agents
or systems, whose costs are in some sense shared or pooled at all times (modeled
by the inner expectation in the average cost definition). If, on the other hand,
we are thinking of a single agent or system that needs to minimize cost over
the single run that it will execute, then the expectation can only be over the
di↵erent average costs incurred by di↵erent infinite runs, i.e., modeled by the
outer expectation of Cp�avg.

In the preceding example the strategy m led to a process in which all states
are transient. In the context of average cost objectives, one typically requires
assumptions about recurrence that ensure, at the very least, that average cost
optimal strategies exist [28, Section 8.3], [18, 1, 32]. In the case of continuous
state spaces, these assumptions are expressed in terms of mixing properties of
the transition kernels, which take the place of irreducibility and aperiodicity
assumptions for discrete state Markov chains. In the following, we introduce a
version of such assumptions for our EMDPs that follows the terminology and
presentation of [4].
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Definition 5 (Small EMDP). An EMDP is small if there exist a measure
⇠ on S that is not identically 0, such that for all s 2 S and all strategies �:
T�(s, ·) � ⇠(·).

Example 4. The EMDP of Example 1 is small: we can define ⇠ by the density
function for (x, y) 2 S:

f⇠(x, y) = min(x0,y0)2S,a2ActN((x0, y0) + v(a), 0.003)(x, y),

where on the right we now identify N(. . .) with its density function. Due to
compactness of S, the minimum on the right exists, and is > 0 for all (x, y).

In the preceding example ’smallness’ was obtained by the ability to transition
in a single step from any point of the state space to all parts of the state space
(even though with potentially very small probability). Another way to achieve
the small property is to allow the system at every step to “re-initialize” with a
small probability q > 0 to a designated state s0. Then definition 5 is satisfied
with ⇠ the pointmass of q on s0.

The following is an adaptation to our special context of general fundamental
results in the ergodic theory of Markov processes.

Theorem 1. Let M be a small EMDP, and � any strategy. Then the transition
kernel T� has a unique stationary distribution P̃�. Denoting expectations w.r.t.
P̃� by Ẽ�, then for all s 2 S:

lim
k!1

dtv(P
k
s,�, P̃�) = 0, (6)

lim
k!1

|Es,�[C(sk,�(sk))]� Ẽ�[C(·,�(·))]| = 0. (7)

and

Ps,�( lim
N!1

1

N

NX

k=1

C(sk,�(sk)) = Ẽ�[C(·,�(·))]) = 1. (8)

Proof: In a small EMDP in our sense, S is a recurrent petite set in the sense
of [4, Section 6.1, Section 7.2.1]. Our theorem then follows from Proposition
7.11,Theorem 7.8, and Theorem 8.7 of [4]. ⇤

3 Approximations Induced by Partitions

We approximate an EMDP by a finite state MDP whose states are subsets of S:
let A = {⌫1, . . . , ⌫|A|} ⇢ 2S be a finite partition of S. We call an element ⌫ 2 A
a region and shall assume that each such ⌫ is Borel measurable. For s 2 S we
denote by [s]A the unique region ⌫ 2 A such that s 2 ⌫. We say that a partition
B refines a partition A if for every ⌫ 2 B there exists µ 2 A with ⌫ ✓ µ. We
write A v B in this case. Given A, we define a standard MDP by means of an
adversary :
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Definition 6 (Adversary, Induced MDP). Let M be an EMDP with action
set Act, A a partition of its state space. An adversary ↵ is a mapping that assigns
to pairs (⌫, a) 2 A⇥Act a probability distributions ↵(⌫, a) over ⌫. A[A] denotes
the space of possible adversaries.

The finite state MDP MA
↵ = (A,Act ,TA

↵ , CA
↵ ) then is defined by the transi-

tion probabilities

TA
↵ (⌫, a, ⌫0) =

Z

⌫
T (s, a, ⌫0)d↵(⌫, a)(s) (9)

and costs

CA
↵ (⌫, a) =

Z

⌫
C(s, a)d↵(⌫, a)(s). (10)

We denote with ⇧[S] and ⇧[A] the space of possible strategies on the EMDP
M, and on the induced MA

· , respectively. For MA
↵ , � 2 ⇧[A] and ⌫ 2 A then

expected costs EA
⌫,�,↵[C] and EA

⌫,↵[C] (for optimal �) are defined as before for
all cost types. Our main question is how well EA

[s]A,↵[C] is guaranteed to ap-

proximate Es[C]. Our first result relates expected costs for partitions of di↵erent
granularities.

Theorem 2. Let M be a continuous EMDP and C 2 {Cu, C�}. Let A v B be
partitions. For all ↵ 2 A[B] there exist ↵�,↵+ 2 A[A], such that

EA
[s0]A,↵� [C]  EB

[s0]B,↵[C]  EA
[s0]A,↵+ [C] (11)

If M is small, then the same holds for C 2 {Cp�avg, Ce�avg}.

The proof of this and the following theorems is given in Appendix B. For
C = Cu this result was essentially already given in [21]. However, there a slightly
more general class of adversaries was considered, so that also the C = Cu case
needs to be addressed again in the proof of this theorem. The same applies to
our next theorem.

Theorem 3. Let M be a continuous EMDP, A a partition of S. Let C 2
{Cu, C�}. Then there exist adversaries ↵�,↵+, such that for all s0 2 S:

EA
[s0]A,↵� [C]  EM

s0 [C]  EA
[s0]A,↵+ [C]. (12)

If M is small, then (12) also holds for C 2 {Cp�avg, Ce�avg}.

A question of key interest is whether the bounds (12) become arbitrarily
tight (for all possible ↵�,↵+) if A is a su�ciently fine partition. The following
definition provides the precise formulation of this question.

Definition 7. A sequence A0 v A1 v · · · v Ak v · · · is called refining
if limk!1 max⌫2Ak sups,s02⌫ ||s � s0|| = 0. A refining sequence approximates
EM
s [C] if

lim
k!1

( sup
↵2A[Ak]

EAk

[s]Ak
,↵[C]� inf

↵2A[Ak]
EAk

[s]Ak
,↵[C]) = 0. (13)
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In [21] it was conjectured that for all continuous EMDPs, all refining se-
quences approximate EM

s [Cu]. This conjecture turns out to be false, however.
The following example describes a continuous (but not small!) EMDP that gives
a counterexample to the conjecture both for Cu and Cp�avg.

Example 5. Let S = [�1/2, 3/2]. Let Act contain only a single action. Thus,
choice of actions and strategies are vacuous, and we therefore drop the action
argument in all notation. The transition probabilities T (x, ·) are defined for all
x 2 S by uniform distribution over an interval of length 1/2. For x 2 (0.5, 1)
this interval is centered on a point to the right of x, and for x 2 (0, 0.5) on a
point to the left of x. Precisely, using U[a,b] to denote the uniform distribution
on the interval [a, b], we define for x 2 (0, 1):

T (x, ·) = U[ 32x�
1
2 ,

3
2x]

.

For all x 2 [1, 3/2] define T (x, ·) = U[1,3/2], and for x 2 [�1/2, 0] define T (x, ·) =
U[�1/2,0]. Thus, the transition model represents a random walk with a drift
towards the right for x > 0.5, a drift to the left for x < 0.5, and the intervals
[�1/2, 0] and [1, 3/2] as absorbing sets. Let the cost be defined as

C(x) =

8
<

:

0 x  0
x x 2 (0, 1)
1 x � 1

This EMDP is continuous. It is not small, because e.g. the transition kernels
T (0, ·) and T (1, ·) assign probability 1 to the disjoint sets [�1/2, 0] and [1, 3/2],
respectively. With probability 1, runs ⇡ will eventually reach one of the absorbing
intervals. Cp�avg(⇡) = 1 if ⇡ is absorbed in [1, 3/2], and Cp�avg(⇡) = 0 if ⇡ is
absorbed in [�1/2, 0]. Thus, for any x 2 S, Ex[Cp�avg] is equal to the probability
that a process started at x is absorbed in [1, 3/2], which is nonzero for all x > 0.

Let A be any partition of S formed by half-open intervals ⌫ = [l,u[ such that
both 0 and 1 are interior points of their respective partition elements. Let ↵ be
the adversary that assigns probability 1 to the left boundary point l of ⌫. In
the resulting MDP MA

↵ then the set A of partition elements ⌫ with non-empty
intersections with [�1/2, 0] is an absorbing set with zero cost. From all other
partition elements there is a non-zero probability of reaching A. Note that for ⌫
contained in [1, 3/2] there is a non-zero probability to transition to the element
containing 1 as an interior point. The left boundary point of this element is < 1,
and therefore in MA

↵ it is possible to “break out” of [1, 3/2], in contrast to the
underlying EMDP. By standard Markov chain theory, thus, with probability 1
a run of MA

↵ will end up in A, and therefore EA
⌫,↵[Cp�avg] = 0 for all ⌫.

Now consider the undiscounted cost. Here, in the original EMDP we have
Ex[Cu] = 0 for all x 2 [�1/2, 0]. Now let ↵ be the adversary defined by the
uniform distribution over ⌫. For any ⌫ contained in [�1/2, 0] there is a nonzero
probability of transitioning to the region ⌫0 containing 0, and similarly as above,
to “break out” of the zero cost component. With probability 1 this will happen
infinitely often in a run of MA

↵ , and so EA
⌫,↵[Cu] = 1 for all ⌫ 2 A.
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For undiscounted cost, and average costs for small EMDPs, on the other
hand, we obtain the desired result:

Theorem 4. Let M be a continuous EMDP, and � < 1. Any refining sequence
approximates EM

s [C�]. If M is small, then any refining sequence approximates
EM
s [Cp�avg] and EM

s [Ce�avg] .

4 Learning in MA
↵

We now turn to learning strategies for the standard finite state MDPs MA
↵ .

When EA
[s0]A,↵[C] is close to EM

s0 [C], then optimality guarantees for Q-learning [19,

32] ensure that learning in MA
↵ yields a near-optimal strategy for the underlying

EMDP. In the cases covered by Theorem 4 we obtain these guarantees, albeit
with the caveat that the theorem does not give a constructive rule for how fine
the partition A needs to be in order to support a desired approximation error
bound.

4.1 Q-learning

We first briefly review Q-learning under the C� objective, and introduce nota-
tion and terminology we need in the sequel. For average cost objectives similar
Q-learning approaches exist [32], and most of the discussion and results of this
section carries over to learning under an average cost objective. A detailed anal-
ysis of this is outside the scope of this paper, however.

Q-learning aims to learn for each region-action pair (⌫, a) the expected cost
of performing action a in state ⌫, and following an optimal strategy thereafter.
The Q-values thus defined are initialized as Q0(⌫, a) = 0 for all ⌫, a. Based on an
observed run ⇡ = ⌫0a0⌫1a1 . . . ⌫tat⌫t+1 . . . the Q-values are iteratively updated
as

Qt+1(⌫t, at) = (1� �t)Qt(⌫t, at) + �t(C(⌫t, at) + � min
a2Act

Qt(⌫t+1, a)), (14)

where �t 2 (0, 1) is the learning rate at iteration t. In order to ensure convergence
with high probability, �t is defined as a decreasing function in the number of
times the pair (⌫t, at) has been updated at previous time points s < t [19]. Thus,
�t is a function of ⇡0:t. Moreover, during learning, actions at are typically not
selected according to a fixed, stationary strategy, but according to a strategy
that also is designed to explore new actions, and, in online learning scenarios,
to already exploit actions that promise low costs according to the current Q-
values. Since according to (14) the current Q-values are a function of ⇡0:t, this
means that both aspects are covered by defining action selection based on a
history-dependent strategy at = �t(⇡0:t). We write � = (�t)t for such a history
dependent strategy. The data may also consist of multiple runs (a.k.a. episodes)
starting at the same or at di↵erent initial state. For notational simplicity we
here take the data to consist of a single long sequence indexed by t, even though
in our examples and experiments data usually consists of multiple episodes.
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4.2 Adversary and Sampling Design

Ideally, given an EMDP M with a partition A one would define adversaries
↵�,↵+ satisfying (12), such that simulating MA

↵� ,MA
↵+ is computationally fea-

sible. Then, the learned cost functions EA
[s0]A,↵� [C],EA

[s0]A,↵+ [C] will provide guar-
anteed lower and upper bound on the true cost in M. Note that even when
Theorem 4 does not apply, a good choice of ↵�,↵+ will lead to tight bounds.

The construction of ↵�,↵+ in the proof of Theorem 3 is based on the true
distribution PM and expected costs EM

s,� in M, which are not known in practice.
We therefore have to design ↵�,↵+ that are likely to provide valid lower and
upper bounds, and that are amenable for use in simulations. With regard to the
latter issue, we now introduce classes of adversaries C1,C2,C3 essentially defined
by the tractability of their defining integrals (9), (10). We always assume that
we can compute costs C(s, a), and sample transitions according to T (s, a, ·) in
the underlying EMDP.

C1 For all ⌫, a, one can sample states s 2 ⌫ according to ↵(⌫, a).
C2 In addition to C1, the cost values (10) can be computed for all ⌫, a.
C3 In addition to C2, the transition probabilities (9) can be computed for all

⌫, a, ⌫0.

For MDPs MA
↵ defined by C3 adversaries, one can, in principle, compute

standard matrix representations of the transition probabilities and cost function,
and apply all standard tools for solving finite state MDPs. Class C2 is important
because it is su�cient to supportQ-learning: we can sample runs according to the
distribution defined by MA

�,↵ for any (possibly non-stationary) strategy �: given
a current state-action pair (⌫, a), we sample a successor state ⌫0 by randomly
sampling s 2 ⌫ according to ↵, then sampling s0 2 S according to T (s, a, ·), and
finally setting ⌫0 := [s0]A. If, according to C2, we can at each step also compute
the cost value CA

↵ (⌫, a), then we obtain exactly the data needed for Q-learning.
A simple type of adversaries is defined by representative points: ↵(⌫, a) is

defined as a pointmass on one designated element s 2 ⌫. Then ↵ belongs at least
to C2. The adversaries of Example 5 were of this type. In this example even C3
holds, due to the simple transition model defined by uniform distributions in
the underlying M. Natural candidates for representative points are those that
minimize or maximize the cost for an action in a region (as in Example 5), and
that thereby are good candidates for defining ↵�,↵+ that satisfy (12). Another
canonical construction is to let ↵(⌫, a) be the uniform distribution on ⌫ (for all
a). We refer to this as the mean adversary, denoted ↵mean.

Example 6. (Example 2 continued). Similar to Example 5 we consider partitions
Ai in the form of uniform grids with region dimensions 1/i⇥1/i. For any region
⌫ and all a 2 Act it is easy to identify the states s 2 ⌫ that minimize or max-
imize the cost C(s, a). We denote the resulting representative state adversaries
as ↵�,↵+. These adversaries then are of type C2. The transition probabilities
TA
↵� ,TA

↵+ require integrals over Gaussian densities, for which no closed-form so-
lutions (but good numerical approximations) exist. Thus, C3 does not hold in a
strict sense, but is satisfied up to numerical approximations.
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Fig. 3: Cost values (y-axis) at selected states learned from partitions of granu-
larities 5,10,20,50, (x-axis) and the ↵�,↵+,↵mean adversaries

Considering the ↵mean adversary, we find that this, too, satisfies C2: clearly
we can sample states uniformly in a grid cell ⌫. Also, due to the simple polynomial
cost function (1), the integrals defining CA

↵mean can be easily computed.
Figure 3 shows for three selected states in S the learned discounted cost

values (� = 0.6) of the regions [s]Ai for i = 5, 10, 20, 50 under the ↵�,↵+,↵mean

adversaries. For learning, we use a strategy � that always selects the next action
uniformly at random, and where the learning rate �t is 1/

p
n, with n the number

of times (⌫t, at) has already been updated. Learning was repeated 10 times. The
curves show the average cost values of the 10 learning runs, and the error bars
indicate the absolute minimum and maximum values obtained in the 10 runs.
Notice that there is very little variation from granularity i = 20 onwards.

Figure 1 on the right shows the strategy learned for MA50

↵� (the strategies
learned for the ↵+ and ↵mean adversaries look very similar).

4.3 Learning with C1 adversaries

While satisfied in Example 6, even C2 can easily be out of reach. We now consider
an approach to approximate Q-learning for MA

↵ when only C1 is true. For any
adversary ↵ with C1, we can approximate simulations of MA

↵ in a Q-learning
scenario with a non-stationary strategy � as follows:

– Given the current history ⇡0:t and selected action at = �t(⇡0:t):
• sample a state s 2 ⌫t according to ↵(⌫t, at)
• return the cost value Ct = C(s, at), and sample the next state ⌫0 according
to T (s, a, ⌫0)⌫02A.

This simulation generates runs ⌫0a0⌫1a1 . . . according to the distribution
P⌫0,� defined by MA

↵ , �, and initial state ⌫0. The simulations di↵er from exact
simulations of MA

↵ (or any MDP) in that the observed cost Ct at step t no longer
is a function of the state-action pair (⌫t, at). However, one can still perform the
Q-learning updates (14) with Ct instead of C(⌫t, at). We denote the function de-
fined by these updates at time t as Q̃t. We now show that in expectation, we
obtain the same results as with standard Q-learning from proper simulations of

12



Fig. 4: Learned Q (green) vs. Q̃-values (red) for selected regions

MA
↵ . Before stating this result, we have to reconsider the strategy � used in

learning. We have said earlier that �t only depends on ⇡0:t, even if �t is defined
in terms of the current Q-values. This is no longer the case for Q̃, where the
cost values Ct, and hence the current Q̃-values, are no longer fully determined
by ⇡0:t. We therefore have to restrict the following theorem explicitly to train-
ing strategies that are a function only of ⇡0:t. This is not a serious limitation,
since the dependence on current Q-values is mostly desirable in online training
scenarios.

In the following we assume a single fixed adversary ↵. To reduce clutter in
the notation, we omit the ↵ index from expectations and probabilities.

Theorem 5. For all (⌫, a) 2 A ⇥ Act, ⌫0 2 A, strategies � such that �t is a
function of ⇡0:t, and t � 0:

EA
⌫0,�(Q̃t(⌫, a)) = EA

⌫0,�(Qt(⌫, a)). (15)

Example 7. (Example 6 continued). We now fix the granularity at i = 5, and
consider the ↵mean adversary. We compare theQ-values learned during properQ-
learning with the Q̃ values obtained during our approximation of the Q learning
process. For both exact and approximate Q-learning we perform 5 learning runs.
Each learning run consists of 50000 episodes of length 10. We record the Q and
Q̃ values at the end of each episode.

Figure 4 shows for the regions containing the points (0, 0), (0, 0.5) and (0.9, 0.9)
the developments of theQ (green) and Q̃ (red) values over the course of the 50000
episodes. One can see that in expectation the learned Q and Q̃ coincide, but that
the Q̃ values exhibit a larger variance (especially for the (0.9, 0.9) region).

5 Conclusion

We have developed a general approach to approximate an EMDP by standard
finite state MDPs defined by partitions of the continuous state space. We have
shown that under suitable conditions on the EMDP, this approximation becomes
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more and more precise for discounted and average cost objectives as the gran-
ularity of the partition increases. We have further developed conditions on the
adversaries that allow us to e↵ectively sample system runs on which standard
Q-learning methods with their known convergence guarantees can be applied.
In case where our system does not allow to implement adversaries with these
properties, we find that under much weaker (usually satisfied) conditions, we can
still simulate system runs, such that applying Q-learning on these runs yields
in expectation the same results we would get if the stronger conditions were
satisfied.

In this paper we have focused on the static scenario where the partition
is fixed during learning. A question for future work is how to best interleave
learning steps on a given partition with refinement steps of the partition, so that
an overall convergence to the cost function of the EMDP is guaranteed.

6 Acknowledgment

This research has been partially funded by the Villum Investigator Grant S4OS
(37819) from Villum Foundation.

Bibliography

[1] A. Arapostathis, V. S. Borkar, E. Fernández-Gaucherand, M. K. Ghosh,
and S. I. Marcus. Discrete-time controlled markov processes with average
cost criterion: A survey. SIAM Journal on Control and Optimization, 31
(2):282–344, 1993.

[2] E. Bacci and D. Parker. Probabilistic guarantees for safe deep reinforce-
ment learning. In N. Bertrand and N. Jansen, editors, Formal Modeling
and Analysis of Timed Systems - 18th International Conference, FOR-
MATS 2020, Vienna, Austria, September 1-3, 2020, Proceedings, volume
12288 of Lecture Notes in Computer Science, pages 231–248. Springer,
2020. doi: 10.1007/978-3-030-57628-8\ 14. URL https://doi.org/10.
1007/978-3-030-57628-8_14.

[3] E. Bacci and D. Parker. Verified probabilistic policies for deep rein-
forcement learning. In J. V. Deshmukh, K. Havelund, and I. Perez,
editors, NASA Formal Methods - 14th International Symposium, NFM
2022, Pasadena, CA, USA, May 24-27, 2022, Proceedings, volume 13260
of Lecture Notes in Computer Science, pages 193–212. Springer, 2022.
doi: 10.1007/978-3-031-06773-0\ 10. URL https://doi.org/10.1007/
978-3-031-06773-0_10.
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trol. In A. Kumar, S. Thiébaux, P. Varakantham, and W. Yeoh, editors,
Proceedings of the Thirty-Second International Conference on Automated
Planning and Scheduling, ICAPS 2022, Singapore (virtual), June 13-24,

14

https://doi.org/10.1007/978-3-030-57628-8_14
https://doi.org/10.1007/978-3-030-57628-8_14
https://doi.org/10.1007/978-3-031-06773-0_10
https://doi.org/10.1007/978-3-031-06773-0_10


2022, pages 565–573. AAAI Press, 2022. URL https://ojs.aaai.org/
index.php/ICAPS/article/view/19843.

[6] G. E. Cho and C. D. Meyer. Comparison of perturbation bounds for the sta-
tionary distribution of a markov chain. Linear Algebra and its Applications,
335(1-3):137–150, 2001.

[7] A. David, P. G. Jensen, K. G. Larsen, A. Legay, D. Lime, M. G.
Sørensen, and J. H. Taankvist. On time with minimal expected cost!
In F. Cassez and J. Raskin, editors, Automated Technology for Verifi-
cation and Analysis - 12th International Symposium, ATVA 2014, Syd-
ney, NSW, Australia, November 3-7, 2014, Proceedings, volume 8837
of Lecture Notes in Computer Science, pages 129–145. Springer, 2014.
doi: 10.1007/978-3-319-11936-6\ 10. URL https://doi.org/10.1007/
978-3-319-11936-6_10.

[8] A. David, P. G. Jensen, K. G. Larsen, M. Mikucionis, and J. H. Taankvist.
Uppaal stratego. In C. Baier and C. Tinelli, editors, Tools and Algorithms
for the Construction and Analysis of Systems - 21st International Confer-
ence, TACAS 2015, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2015, London, UK, April 11-
18, 2015. Proceedings, volume 9035 of Lecture Notes in Computer Science,
pages 206–211. Springer, 2015. doi: 10.1007/978-3-662-46681-0\ 16. URL
https://doi.org/10.1007/978-3-662-46681-0_16.

[9] C. Dehnert, S. Junges, J. Katoen, and M. Volk. A storm is coming: A
modern probabilistic model checker. In R. Majumdar and V. Kuncak, ed-
itors, Computer Aided Verification - 29th International Conference, CAV
2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part II, vol-
ume 10427 of Lecture Notes in Computer Science, pages 592–600. Springer,
2017. doi: 10.1007/978-3-319-63390-9\ 31. URL https://doi.org/10.
1007/978-3-319-63390-9_31.

[10] A. B. Eriksen, H. Lahrmann, K. G. Larsen, and J. H. Taankvist. Controlling
signalized intersections using machine learning. In World Conference on
Transport Research, volume 48 of Transportation Research Procedia, pages
987–997. Science Direct, 2020.

[11] M. A. Goorden, K. G. Larsen, J. E. Nielsen, T. D. Nielsen, M. R. Rasmussen,
and J. Srba. Learning safe and optimal control strategies for storm water
detention ponds. In R. M. Jungers, N. Ozay, and A. Abate, editors, 7th
IFAC Conference on Analysis and Design of Hybrid Systems, ADHS 2021,
Brussels, Belgium, July 7-9, 2021, volume 54 of IFAC-PapersOnLine, pages
13–18. Elsevier, 2021. doi: 10.1016/j.ifacol.2021.08.467. URL https://doi.
org/10.1016/j.ifacol.2021.08.467.

[12] M. A. Goorden, P. G. Jensen, K. G. Larsen, M. Samusev, J. Srba,
and G. Zhao. STOMPC: stochastic model-predictive control with up-
paal stratego. In A. Bouajjani, L. Hoĺık, and Z. Wu, editors, Auto-
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A Mathematical Background

The K-dimensional real space RK is equipped with the standard Euclidean met-

ric deucl((x1, . . . ,xK), (y1, . . . , yK)) :=
qPK

i=1(xi � yi)2. Probability distribu-

tions on RK are defined on systems of subsets of RK that form a �-algebra, i.e.,
that include the empty set, and are closed under countable unions and comple-
mentation. The elements of the �-algebra are also referred to as the measurable
sets. The Borel �-algebra B(RK) is the smallest �-algebra that contains all sets
that are open with respect to deucl. For a measurable subset S ✓ RK , the Borel
�-algebra B(S) consists of all elements of B(RK) that are subsets of S.

A transition kernel models a single probabilistic transition step in a contin-
uous state space. It corresponds to a transition probability matrix in finite state
Markov chains. Formally, a transition kernel on S is a function T : S ⇥ B(S) !
[0, 1], such that T (s, ·) is a probability distribution on B(S) for all s 2 S, and
T (·,B) is measurable for all B 2 B(S). The first of these conditions is the obvi-
ous requirement to define the probability distribution for the successor state s0

given current state s. The second condition is needed in order to make integrals
well-defined that define probabilities of events of interest. For example, given a
distribution P0 for the initial state s0, the probability that the successor state
s1 lies in the measurable set B is

P (s1 2 B) =

Z

S
T (s0,B)P0(ds0). (16)

To generalize from Markov processes to Markov decision processes, the transition
kernels are parameterized by the actions a 2 Act , i.e., are functions T (s, a,B).
For a given strategy � : S ! Act , T�(s,B) := T (s,�(s),B) then is a standard
transition kernel, under the condition that the sets {s 2 S|�(s) = a} are mea-
surable. A transition kernel T representing a single transition step induces for
all k � 1 a transition kernel T k representing k successive steps taken according
to T . Formally, T 1 = T , and

T k+1(s0,B) =

Z

S
T (sk,B)T k(s0, dsk).

Generalizing (16), a transition kernel T in conjunction with an initial state
distribution P0 defines the probabilities of cylinder sets of the form s0 2 B0, s1 2
B1, ..., sk 2 Bk (Bi measurable sets), which, in turn, induce a unique probability
distribution on the space S1 of infinite state sequences (equipped with a canon-
ical �-algebra). When the transition kernel is defined by a strategy �, and the
initial distribution P0 is given by a pointmass on a fixed initial state s, then we
denote this distribution by Ps,�, and its marginal for the state at fixed step k
by P k

s,�.
For two probability distributions P ,Q defined on B(S) the total variation

distance is defined as

dtv(P ,Q) := sup
B2B(S)

|P (B)�Q(B)|.
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B Proofs

Proof of Theorem 2: We consider the special case where B is equal to A,
except that a single ⌫0 2 A is sub-divided into ⌫0 = ⌫00 [ ⌫000 in B. The general
case follows directly from this. Let ↵ 2 A[B] be given. For the left inequality of
(11) we show that

8� 2 ⇧[B], 9�̂ 2 ⇧[A], 9↵� 2 A[A] : EA
[s0]A,�̂,↵� [C]  EB

[s0]B,�,↵[C] (17)

This we show for all cost types, and without the restriction to small M. Let �
be given. Let a0 := �(⌫00), a

00 := �(⌫000 ), and assume a0 6= a00 (the case a0 = a00

can be treated by a simpler variation of the same arguments). We first construct
a history-dependent, randomized strategy �̃. For a run ⇡ of MA and t � 0 let
⇡[0:t�1] denote the prefix of ⇡ containing the first t state-action pairs. A run ⇡
in MA defines a run ⇡̂ in MB by replacing state-action pairs ⌫0, a0 with ⌫00a

0,
and ⌫0, a00 with ⌫000 a

00. Define for t � 0 and a 2 Act :

�̃(⌫,⇡[0:t�1])(a) :=

8
>><

>>:

PB
�,↵(st = ⌫00|⇡̂[0:t�1]) ⌫ = ⌫00, a = a0

PB
�,↵(st = ⌫000 |⇡̂[0:t�1]) ⌫ = ⌫000 , a = a00

1 ⌫ 62 {n0
0,n

00
0}, a = �(⌫)

0 otherwise

Define ↵� as

↵�(⌫, a) :=

8
<

:

↵(⌫00, a
0) ⌫ = ⌫0, a = a0

↵(⌫000 , a
00) ⌫ = ⌫0, a = a00

↵(⌫, a) ⌫ 6= ⌫0

We now obtain that for all ⇡[0:t] in MA:

PA
[s0]A,�̃,↵�(⇡[0:t]) = PB

[s0]B,�,↵(⇡̂[0:t]).

Since CA
↵�(⇡) = CB

↵ (⇡̂), this implies that EA
[s0]A,�̃,↵� [C] = EB

[s0]B,�,↵[C]. SinceMA
↵�

is a finite state MDP, there exist for all cost definitions optimal strategies that
are deterministic and stationary, i.e., there exists �̂ 2 ⇧[A] with EA

[s0]A,�̂,↵� [C] 
EA
[s0]A,�̃,↵� [C].
For the right inequality we show

8� 2 ⇧[A] 9�̂ 2 ⇧[B] 9↵+ 2 A[A] : EB
[s0]B,�̂,↵[C]  EA

[s0]A,�,↵+ [C]. (18)

Let � 2 ⇧[A], and �̂ the induced strategy in MB defined by �̂(⌫00) = �̂(⌫000 ) =
�(⌫0) and �̂(⌫) = �(⌫) for all ⌫ 6= ⌫0. We now first consider the case C 2
{Cp�avg, Ce�avg}. Since M is small, the induced Markov chain MB

�̂,↵ is irre-

ducible and aperiodic with unique stationary distribution P̃B
�̂,↵. Define

↵+(⌫0,�(⌫0)) :=
P̃B
�̂,↵(⌫

0
0)↵(⌫

0
0,�(⌫0)) + P̃B

�̂,↵(⌫
00
0 )↵(⌫

00
0 ,�(⌫0))

P̃B
�̂,↵(⌫

0
0) + P̃B

�̂,↵(⌫
00
0 )

,
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and ↵+(⌫,�(⌫)) = ↵(⌫,�(⌫)) for all ⌫ 6= ⌫0. Then

TA(⌫0,�(⌫0), ·) =
P̃B
�̂,↵(⌫

0
0)T

B(⌫00,�(⌫0), ·) + P̃B
�̂,↵(⌫

00
0 )T

B(⌫000 ,�(⌫0)), ·
P̃B
�̂,↵(⌫

0
0) + P̃B

�̂,↵(⌫
00
0 )

,

and for ⌫ 6= ⌫0

TA(⌫,�(⌫), ⌫0) = TB(⌫,�(⌫), ⌫00) + TB(⌫,�(⌫), ⌫000 ).

Comparing the stationarity equations for P̃B
�̂,↵ and P̃A

�,↵+ one then finds

P̃A
�,↵+(⌫0) = P̃B

�̂,↵(⌫
0
0) + P̃B

�̂,↵(⌫
00
0 ).

Together with

CA
↵+(⌫0,�(⌫0)) =

P̃B
�̂,↵(⌫

0
0)CB(⌫00,�(⌫0)) + P̃B

�̂,↵(⌫
00
0 )CB(⌫000 ,�(⌫0))

P̃B
�̂,↵(⌫

0
0) + P̃B

�̂,↵(⌫
00
0 )

this yields EB
[s0]B,�̂,↵[C] = EA

[s0]A,�,↵+ [C].
Finally, we turn to C 2 {Cu, C�}. Assume without loss of generality that

EB
⌫0
0,�̂,↵

[C]  EB
⌫00
0 ,�̂,↵[C]. Define ↵+(⌫0,�(⌫0)) = ↵(⌫000 ,�(⌫0)). Then the inequality

in (18) is verified by comparing the cost equations for MB
�̂,↵ and MA

�,↵+ .
⇤

Proof of Theorem 3:
We start with the right inequality of (12) for C 2 {Cu, C�}. Let � 2 ⇧[A],

and �̂ 2 ⇧[S] the induced strategy on M. Let s0 2 S be given. We define a
non-stationary adversary ↵⇤ that takes the transition step k � 1 as an additional
input by letting ↵⇤(⌫,�(⌫), k) be equal to P k

s0,�̂
conditioned on ⌫, denoted P k

s,�̂|⌫
(given the fixed strategy �, the adversary need only be defined for state/action
pairs (⌫,�(⌫))).

We first show by induction that for all k � 0 and ⌫ 2 A:

PM,k
s0,�̂

(⌫) = PA,k
[s0]A,↵⇤,�(⌫). (19)

For k = 0 we have that the probabilities on both sides are 1 for ⌫ = [s0]A. For
the induction step we have

PM,k
s0,�̂

(⌫) =
X

⌫02A
PM,k�1
s0,�̂

(⌫0)

Z

⌫0
T (s, �̂(s), ⌫)dPM,k�1

s0,�̂
|⌫0(s) =

X

⌫02A
PA,k�1
[s0]A,↵⇤,�(⌫

0)↵(⌫0,�(⌫0), ⌫) = PA,k
[s0]A,↵⇤,�(⌫). (20)
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We now consider the expected cost at step (k � 0), and obtain:

EM
s0,�̂[C(sk, �̂(sk))] =

Z

S
C(s, �̂(s))dPM,k

s0,�̂
(s) =

X

⌫2A
PM,k
s0,�̂

(⌫)

Z

⌫
C(s, �̂(s))dPM,k

s0,�̂
|⌫(s) =

X

⌫2A
PA,k
[s0]A,↵⇤,�(⌫)

Z

⌫
CA(⌫,�(⌫)) =

EA
[s0]A,↵⇤,�[C(⌫k,�(⌫k)]. (21)

For C 2 {Cu, C�} the pointwise equality (21) for each k implies the equality of
expectations over paths, and hence

EM
s0 [C]  EM

s0,�̂[C] = EA
[s0]A,↵⇤,�[C]. (22)

For the fixed stationary strategy �, an adversary ↵ that maximizes EA
[s0]A,�,↵[C]

can always be chosen to be stationary. Thus, even though ↵⇤ was defined as a
non-stationary adversary, we have

EA
[s0]A,↵⇤,�[C]  max

↵
EA
[s0]A,�,↵, (23)

where now the maximum is only taken over stationary adversaries. Combining
(22) and (23), and observing that � was an arbitrary strategy on MA, we obtain
the right-hand inequality of (12).

We next prove the left inequality of (12). Let A be given, and � 2 ⇧[S].
Let Au � denote the refinement of A that is defined by intersecting A with the
partition {{s 2 S|�(s) = a}|a 2 Act}. Then � directly induces a strategy �̂ on
MAu�. As above, we define a non-stationary adversary ↵⇤ 2 A[Au�] by letting
↵⇤(⌫,�(⌫), k) be equal to P k

s0,�|⌫. In analogy to (21) we obtain

EAu�
[s0]Au� ,�̂,↵⇤ [C(⌫k, �̂(sk))] = EM

[s0]A,�[C(sk,�(⌫k)]. (24)

Together with the left inequality of (11) (with B = A u �) and again the fact
that a minimizing adversary can be chosen to be stationary, this shows the left
side of (12).

The proof for C 2 {Cp�avg, Ce�avg} is mostly an application of Theorem 1,
which immediately shows that in this case for all s0 2 S and strategies �

EM
s0,�[Ce�avg] = EM

s0,�[Cp�avg] = ẼM
� [C(s,�(s)]. (25)

The smallness of M implies that for all partitions A and � 2 ⇧[A],↵ 2 A[A]
the Markov chain MA

↵,� is irreducible and aperiodic with a unique stationary

distribution P̃A
↵,�, and therefore in analogy to (25) for all � 2 ⇧[A], ⌫0 2 A:

EA
⌫0,�,↵[Ce�avg] = EA

⌫0,�,↵[Cp�avg] = ẼA
�,↵[C↵(⌫,�(⌫)]. (26)

We prove (12) by the same lines of argument as above. However, the step-wise
equalities (21), (24) are now replaced by analogous properties of the stationary
limit distributions.
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Beginning again with the right inequality of (12), let � 2 ⇧[A]. The in-
duced �̂ 2 ⇧[S] has a stationary limit distribution P̃M

�̂ . Define ↵ 2 A[A] as
↵(⌫,�(⌫)) = P̃M

�̂ |⌫ (actions other than �(⌫) are irrelevant). We now have that
the stationary distribution P̃A

�,↵ is equal to the marginal of P̃M
�̂ on A, and hence

ẼM
�̂ [C(s, �̂(s)] =

X

⌫2A
P̃M
�̂ (⌫)

Z

⌫
C(s, �̂(s))d(P̃M

�̂ |⌫)(s) =

X

⌫2A
P̃A
�,↵(⌫)CA(⌫,�(⌫)) = ẼA

�,↵[CA
↵ (⌫,�(⌫))] (27)

For the left inequality of (12) let Au� and �̂ 2 ⇧[Au�] be defined as before.
Define ↵�(⌫,�(⌫)) = P̃M

� |⌫. Again, the stationary distribution P̃Au�
↵�,�̂ is equal

to the marginal of P̃M
� on A u �, and we obtain (27) for A u � in place of A.

Together with (11) this yields the desired result.
⇤

Proof of Theorem 4: For any partition A let �(A) = max⌫2A sups,s02⌫ ||s�s0||
denote the diameter of A. For both parts of the theorem it is su�cient to show
that for all ✏ > 0: when the diameter of Ak is su�ciently small, then for all
� 2 ⇧[Ak], ↵�,↵+ 2 A[Ak], and ⌫ 2 Ak:

|EAk

⌫,�,↵� [C]� EAk

⌫,�,↵+ [C]| < ✏. (28)

Then, assuming without loss of generality that

EAk
⌫,�⇤,↵[C�]  EAk

⌫,�⇤0,↵0 [C�]

where �⇤0,�⇤ are the optimal strategies for MAk
↵0 ,MAk

↵ , we obtain

EAk
⌫,↵[C�] = EAk

⌫,�⇤,↵[C�]  EAk
⌫,�⇤0,↵0 [C�]  EAk

⌫,�⇤,↵0 [C�]  EAk
⌫,↵[C�] + ✏.

We first show (28) for C = C�. For N � 0 we define the truncated expected
cost EN by taking the sum in (3) only over i = 0, . . . ,N . For each � < 1 and
each ✏ > 0 there then exists an N � 0 such that

0  E·[C�]� EN
· [C�] < ✏/2, (29)

where these bounds apply uniformly to all expectations both in the EMDP M,
the induced IMPDPs MAi , for all strategies and adversaries, and for all states,
respectively regions. According to Theorem 4 of [21] there exists a � > 0, such
that for all partitions Ak with �(Ak)  �, all strategies � defined on MAk , all
pairs of adversaries ↵�,↵+, and all ⌫ 2 A:

|EAk,N
⌫,�,↵� [C�]� EN ,Ak

⌫,�,↵+ [C�]| < ✏/2 (30)

(the theorem and proof in [21] are for undiscounted cost, but the case of dis-
counted costs is directly implied by this). In conjunction with (29), (30) implies
(28).
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We now turn to average cost Cp�avg (which, under the smallness assump-
tion, is equal to Ce�avg). Let �,↵�,↵+, ⌫ as above in (28). Let P̃Ak

�,↵� , P̃
Ak

�,↵+ be

the stationary distributions of MAk

�,↵� ,MAk

�,↵+ . Our proof relies on perturbation

bounds for Markov chains [29, 6], which in our context can be written as

dtv(P̃
Ak

�,↵� , P̃
Ak

�,↵+) 
1

1� ⌧1(MAk

�,↵�)
max
⌫2Ak

dtv(T
Ak

↵� (⌫,�(⌫), ·),TAk

↵+ (⌫,�(⌫), ·)), (31)

where

⌧1(MAk
�,↵) := max

⌫,⌫02Ak

dtv(T
Ak
↵ (⌫,�(⌫), ·),TAk

↵ (⌫0,�(⌫), ·)) (32)

is the ergodicity coe�cient. We first obtain a bound on ⌧1(MAk
�,↵) that is uniform

for k,�,↵. Let ⌫, ⌫0 2 Ak.

dtv(T
Ak
↵ (⌫,�(⌫), ·),TAk

↵ (⌫0,�(⌫), ·)) =
1

2

X

⌫̄

|TAk
↵ (⌫,�(⌫), ⌫̄)� TAk

↵ (⌫0,�(⌫), ⌫̄)|

 1

2

X

⌫̄

|TAk
↵ (⌫,�(⌫), ⌫̄)� ⇠(⌫̄)|+ 1

2

X

⌫̄

|TAk
↵ (⌫0,�(⌫), ⌫̄)� ⇠(⌫̄)|

= 1� ⇠(S). (33)

For the last equality observe that the smallness ofM implies that for allA,�,↵, ⌫, ⌫̄:
TA
↵ (⌫,�(⌫), ⌫̄) � ⇠(⌫̄)

Due to the continuity of M we have that for ✏ > 0 there exists � such that
for partitions Ak with �(Ak)  � and all ⌫ 2 Ak

dtv(T
Ak

↵� (⌫,�(⌫), ·),TAk

↵+ (⌫,�(⌫), ·)) < ✏/2 (34)

and

|C↵�(⌫)� C↵+(⌫)| < ✏/2. (35)

(34) and (33) imply that for a given ✏ there exists � > 0, such that for all
�,↵�,↵+:

dtv(P̃
Ak

�,↵� , P̃
Ak

�,↵+) < ✏. (36)
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We therefore obtain that for su�ciently fine Ak

|EAk

�,↵� [Cp�avg]� EAk

�,↵+ [Cp�avg]| =

|
X

⌫2Ak

P̃Ak

�,↵�(⌫)C↵�(⌫)�
X

⌫2Ak

P̃Ak

�,↵+(⌫)C↵+(⌫)| 

|
X

⌫2Ak

P̃Ak

�,↵�(⌫)C↵�(⌫)�
X

⌫2Ak

P̃Ak

�,↵�(⌫)C↵+(⌫)|+

|
X

⌫2Ak

P̃Ak

�,↵+(⌫)C↵+(⌫)�
X

⌫2Ak

P̃Ak

�,↵�(⌫)C↵+(⌫)| 

✏/2 +
X

⌫2Ak

C↵+(⌫)|P̃Ak

�,↵+(⌫)� P̃Ak

�,↵�(⌫)C↵+(⌫)| 

✏/2 + cmax · 2 · ✏.

where the ✏/2 bound of the first term is due to (35), and the cmax · 2 · ✏ bound
for the second term is due to (34). ⇤

Proof of Theorem 5: By induction on t. For t = 0 we have Q̃0 ⌘ Q0 ⌘ 0.
Assume (15) holds for t. Then we first write

EA
⌫0,�(Q̃t+1(⌫, a)) =

X

⇡0:t2(A⇥Act)t

PA
⌫0,�(⇡0:t)EA

⌫0,�(Q̃t+1(⌫, a)|⇡0:t), (37)

and similarly for EA
⌫0,�(Qt+1(⌫, a)). Since the probabilities PA

⌫0,�(⇡0:t) are the

same for Q̃t and Qt, it is su�cient to show that for all ⇡0:t

EA
⌫0,�(Q̃t+1(⌫, a)|⇡0:t) = EA

⌫0,�(Qt+1(⌫, a)|⇡0:t). (38)

If ⌫t 6= ⌫ in ⇡0:t, or a 6= �t(⇡0:t), then the Q and Q̃ values of (⌫, a) are not
updated in the t+ 1’st iteration, and (15) holds by induction hypothesis.

Assume, then, that (⌫t, at) = (⌫, a). We obtain:

EA
⌫0,�(Q̃t+1(⌫, a)|⇡0:t) = (1� �t(⇡0:t))EA

⌫0,�(Q̃t(⌫, a)|⇡0:t)+

�t(⇡0:t)(EA
⌫0,�(Ct|⇡0:t) + �EA

⌫0,�( min
a02Act

Q̃t(⌫t+1, a)|⇡0:t)), (39)

where in the rightmost term the Q̃t(⌫t+1, a) now are to be understood as ran-
dom variables defined by the random next state ⌫t+1. The distribution of Ct
conditional on ⇡0:t only depends on ⌫t = ⌫, and the expectation is

EA
⌫0,�(Ct|⇡0:t) =

Z

⌫
C(s, a)d↵(⌫, a)(s) = CA

↵ (⌫, a). (40)
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The distribution for the random ⌫t+1 given ⇡0:t only depends on (⌫t, at) = (⌫, a).
We can therefore write:

EA
⌫0,�( min

a02Act
Q̃t(⌫t+1, a)|⇡0:t) =

Z

⌫

X

⌫02A
T (s, a, ⌫0) min

a02Act
Q̃t(⌫

0, a0)d⇢(s) =

X

⌫02A
min

a02Act
Q̃t(⌫

0, a0)

Z

⌫
T (s, a, ⌫0)d⇢(s) =

X

⌫02A
↵⇢
T (⌫, a)(⌫

0) min
a02Act

Q̃t(⌫
0, a0).

(41)

Substituting the right-hand sides of (40) and (40) into the right-hand side of
(39), and replacing by induction hypothesis Q̃t with Qt everywhere, we obtain

(1� �t(⇡0:t))EA
⌫0,�(Qt(⌫, a)|⇡0:t)+

�t(⇡0:t)(↵
⇢
C(⌫, a) + �

X

⌫02A
↵⇢
T (⌫, a)(⌫

0) min
a02Act

Q̃t(⌫t+1, a) =

EA
⌫0,�(Qt+1(⌫, a)|⇡0:t). (42)

⇤
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