
Systematic Translation from Natural Language
Robot Task Descriptions to STL

Sara Mohammadinejad1, Sheryl Paul1, Yuan Xia1, Vidisha Kudalkar1, Jesse
Thomason1, and Jyotirmoy V. Deshmukh1

University of Southern California

Abstract. Natural language is an intuitive way for humans to com-
municate formal requirements of cyber-physical systems, such as safety
specifications, performance requirements, and task objectives with au-
tonomous cyber-physical systems such as robots. While natural language
(NL) is ambiguous, real world tasks and their safety requirements need
to be communicated unambiguously. Signal Temporal Logic (STL) is a
formal logic that can serve as a versatile, expressive, and unambiguous
formal language to describe robotic tasks. On one hand, existing work
in using STL for the robotics domain typically requires end-users to ex-
press task specifications in STL, which is a challenge for non-expert users.
On the other, translating from NL to STL specifications is currently re-
stricted to specific fragments. In this work, we propose DialogueSTL,
an explainable and interactive approach for learning correct and concise
STL formulas from (often) ambiguous NL descriptions. We use a combi-
nation of semantic parsing, pre-trained transformer-based language mod-
els, and user-in-the-loop clarifications aided by a small number of user
demonstrations to predict the best STL formula to encode NL task de-
scriptions. An advantage of mapping NL to STL is that there has been
considerable recent work on the use of reinforcement learning (RL) to
identify control policies for robots. We show we can use Deep Q-Learning
techniques to learn optimal policies from the learned STL specifications.
We demonstrate that DialogueSTL is e!cient, scalable, and robust,
and has high accuracy in predicting the correct STL formula with a few
number of demonstrations and a few interactions with an oracle user.

Keywords: Natural language · Signal temporal logic · Robotics.

1 Introduction

Future human societies are likely to interact with general purpose robots using
natural language commands. Unfortunately, natural language descriptions can
be ambiguous and can have multiple meanings or under-specify the task. For
example, consider the command “If it is dark, turn on the lamp before picking
up the book.”: this leaves it up to the robot to interpret it as “if it is dark,
turn on the lamp and pick up the book” (i.e. do nothing if it is not dark), or,
“if it is dark, turn on the lamp and then pick up the book, else pick up the
book” Similarly, with a command like- “pick up the door key card and open
the door”. A robot would need to infer under-specified information such as, how

2 Mohammadinejad et al.

soon should the door be opened, how long after the key card is picked up should
the robot wait, which door to open, etc. Signal Temporal Logic (STL) [15] has
been used as a flexible, expressive, and unambiguous language to describe robotic
tasks that involve time-series data and signals. For instance, STL can be used
to formulate properties such as “the robot should immediately extinguish fires
but can accept delays in opening doors.” From a grammar-based perspective,
an STL formula can be viewed as atomic formulas combined with logical and
temporal operators [17]. In this work, we match di!erent components of a natural
language description with atoms and operators to form candidate STL formulas,
and use dialogue with users to resolve ambiguities.

Formalizing behavior using temporal logics such as STL requires the user to
specify the correct temporal logic specification [4,19]—a di”cult and error-prone
task for untrained human users. Translating a sentence written in a natural and
ambiguous language into a more general and concise formal language is an open
challenge [12].

Seminal works in [11] considers the problem of interactive synthesis of agent
policies from natural language specifications. The authors consider similar envi-
ronments as ours but expect specifications to be provided in structured English
that is then translated to LTL formulas. The main objective is to explore the
space of specifications using user demonstrations and constraint-based methods
to identify the precise specifications, which are then used to synthesize robot poli-
cies using reactive synthesis methods. In our work, the emphasis is on directly
learning the structure of the task objective using modern natural language pro-
cessing tools and employing a dialogue-based method to refine the specification.
Furthermore, we use recently developed RL methods to learn optimal policies
from STL instead of LTL synthesis approaches.

Finally, we would like to provide some historical context to this work: this
work was initiated before the emergence of large language models like GPT ver-
sions higher than 3.5. It is certainly possible to repeat the experiments performed
in this paper using state-of-the-art large language models, and preliminary evi-
dence suggests that they perform well in the translation task. Nevertheless, we
argue that we are proposing a compositional approach that could help debug
wrong formulas, create chain-of-reasoning prompts to refine or repair subfor-
mulas, and other specification engineering tasks. We argue that this makes our
approach valuable even in a space dominated by LLM-based translation.

Fig. 1 shows the high-level flow of DialogueSTL, whose input consists of
natural language description (NL) and a few demonstrations (demos) of a robotic
task.

Our framework involves training a Dual Intent and Entity Transformer (DIET)
[6] model on synthetic datasets to accurately predict STL atoms from verb
phrases. Bidirectional Encoder Representations from Transformers (BERT), a
state-of-the-art tool for masked language modeling and next sentence prediction,
is used to build an operator predictor for identifying appropriate STL operators
for natural language conjunctions and adverbs. We then apply part-of-speech
tagging with Flair to extract phrases from NL descriptions and construct Para-
metric STL based on causal and temporal dependencies as clarified by the user.
Finally, we select the correct formulas and demonstrate its use in learning opti-

Systematically translating Robot Task Objectives to STL 3

“Turn on the
lamp and pick
up the cube”

Natural
Language

Demo

NL
Splitter

Atom
& Operator
Predictor

Verb Phrases,
Conjunctions,
Adv PSTL

Generator

Atoms,
Ops	

PSTL to
STL

Deep
RL

Optimal
Policy

Best STL

PSTL Formulas

Fig. 1. We infer a STL formula and optimal policy from a given natural language
description, a few demonstrations, and questions to the user.

mal policies. We show experimentally that our method is e”cient and scalable,
and note that in most cases the user has to provide only a few demonstrations—
often only one, of a successful behavior for our framework to arrive at the correct
STL formula using dialogue interactions.

1.1 Contributions

We summarize the contributions of our approach as follows:

1. We proposeDialogueSTL- an interactive and explainable method for learn-
ing STL formulas from ambiguous natural language descriptions that addi-
tionally provides for user-in-the-loop clarifications where we separately pre-
dict atomic signal predicates and logical and temporal operators.

2. We construct Parametric STL (PSTL) formulae based on causal and tem-
poral dependencies - a consideration often overlooked, and use o!-the-shelf
Deep Q-learning (DQN) to learn optimal control policies for robots from the
derived STL specifications (using STL robustness as a reward function).

3. Evaluation on gridworld experiments indicates that we minimize the number
of user demonstrations and dialogue interactions to refine and accurately de-
termine STL specifications. Moreover, we also demonstrate superior accuracy
and training e”ciency compared to DeepSTL, highlighting the transparency
provided by DialogueSTL’s explanation dictionaries.

2 Background

Definition 1 (Demonstration). Demonstration is a finite sequence of state-

action pairs. Formally, d = {(s0,a0), (s1,a1), ..., (sω,aω)} defines a demonstra-

tion with length ω, where si → S and ai → A. S is the set of all possible states

and A is the set of all possible actions in an environment.

4 Mohammadinejad et al.

Definition 2 (Trace). A trace x is a mapping from time domain T to value

domain D, x : T ↑ D where, T ↓ R→0
, D ↓ Rn

, T ↔= ↗, and the variable n

denotes the trace dimension.

Signal Temporal Logic (STL). Signal Temporal Logic (STL) is a logic to
reason about properties of real-valued signals. The basic primitive in STL is
called atomic predicate or atom. Atoms are formulated as f(x) ↘ c, where x is
a trace, f is a scalar-valued function over the trace x, ↘ → {≃,⇐,=}, and c → R.
For instance, x ⇐ 1 is an atomic predicate, where f(x) = x, ↘ is ⇐, and c = 1.
Temporal specifications are created by adding operators such as G (always), F
(eventually) and U (until) to atoms. Each temporal operator is indexed by an
interval I := (a, b) | (a, b] | [a, b) | [a, b], where a, b → T and a < b. For example,
G[0,5](x ⇐ 1) means that signal x is always less than or equal to 1 between
timesteps 0 to 5. Formally, the STL syntax is defined as follows:

ε := true | f(x) ↘ c | ¬ε | ε1 ⇒ ε2 | ε1 UI ε2, (1)

G and F operators are special instances of U operator and can be written
as FIε ↭ trueUI ε, and GIε ↭ ¬FI¬ε.

The Boolean satisfaction of an atomic predicate is true if the predicate is
satisfied and false if it is violated, and the semantics of logical and temporal
operators are defined as:

– ¬ε is satisfied if ε is not satisfied or ε is violated.
– ε1 ⇒ ε2 holds if both ε1 and ε2 are satisfied.
– ε1 ⇑ ε2 holds if either ε1 or ε2 is satisfied.
– ε1 ↑ ε2 is equivalent to ¬ε1 ⇑ ε2, which means that either ε1 should not

hold or ε2 should hold.
– GIε means ε must hold for all instances of interval I.
– FIε means ε must hold at least once in interval I.
– ε1UIε2 means ε1 must hold in I until ε2 is satisfied.

The globally operatorGIε specifies the property εmust hold true for all time
points t

↑ within the interval I starting from t. This means that from the start
of the interval t to the end of t + I, the condition ε must be continuously held
as true. The eventually operator FIε states that there exists at least one-time
point t

↑ within the interval I starting from t where the property ε is true. s is
the signal function. The formal definition can be referred as:

s, t |= GIε i! ⇓t↑ → t+ I, s, t
↑ |= ε

s, t |= FIε i! ⇔t↑ → t+ I, s, t
↑ |= ε

The key aspect of STL is the nest temporal operators within the intervals. This
nesting capability enables STL to express more complex temporal relationships.
The operatorGFIε guarantees the satisfaction of the property ε within the time
frame, embodying a liveness property. FGIε ensures that starting from some
point in time t, the property ε will continuously hold true for every subsequent
interval I. Formally, they are defined as:

s, t |= GFIε i! ⇓t ≃ 0, ⇔t↑ → t+ I, s, t
↑ |= ε

s, t |= FGIε i! ⇔t ≃ 0, ⇓t↑ → t+ I, s, t
↑ |= ε

Systematically translating Robot Task Objectives to STL 5

Fig. 2. The robot tries to reach the lamp placed at location (0, 0) in 15 seconds while
avoiding wall (black) and water (blue) tiles. Both green () and red () demon-
strations satisfy the formula F[0,15](robotAt(0,0) == 0); in the next 15 seconds, the
robot should eventually reach to the location (0, 0).

Example 1. Consider the grid world environment illustrated in Fig. 2. While
both demonstrations reach the lamp, only the green demonstration satisfies the
formulas G(¬(robotAtWall ≃ 0))1 and G(¬(robotAtWater ≃ 0)). The formula
G(¬(robotAtWall ≃ 0)) means that the robot should never climb walls. The
formula G(¬(robotAtWater ≃ 0)) means that the robot should not step in water.
The red demonstration intersects with both walls and water tiles.

Parametric Signal Temporal Logic (PSTL). A PSTL [2] formula is an
extension of an STL formula where constants are replaced by parameters. A
STL formula is obtained by pairing a PSTL formula with a valuation function
that assigns a value to each parameter variable. For example, consider the PSTL
formula ε(x, y, ϑ) = F[0,ε](robotAt(x,y) ≃ 0) with parameters ϑ , x and y. The
STL formula F[0,15](robotAt(0,0) ≃ 0), which is an instance of ε, is obtained with
the valuation ϖ = {ϑ ↖↑ 15, x ↖↑ 0, y ↖↑ 0}. From a grammar-based perspective, a
PSTL formula can be viewed as atomic formulas combined with unary or binary
operators [17].

ε := atom | unaryOp(ε) | binaryOp(ε,ε)
unaryOp := ¬ | FI | GI

binaryOp := ⇑ | ⇒ | UI |↙
(2)

For instance, PSTL formula F[0,ε](¬(robotAt(a,b) ≃ 0) ⇑ robotAt(c,d) ≃ 0)
consist of atoms robotAt(a,b) ≃ 0 and robotAt(c,d) ≃ 0, unary operators ¬,F
and binary operator ⇑ .

3 DialogueSTL: Learning PSTL Candidates

In this section, we propose an explainable and interactive approach to learn can-
didate Parametric STL (PSTL) formulas from the natural language description

1
robotAtWall is a trace that its value at time instance t is computed as distance of
the robot from the closest wall at time t.

6 Mohammadinejad et al.

of a task or constraints provided by the user. The overall structure of our ap-
proach is shown in Algo. 1. As a running example, consider the command “turn
on the lamp and pick up the cube” for the grid world environment shown in
Fig. 2. The high-level view of our method for the running example is illustrated
in Fig. 3, and the method for converting NL to candidate PSTL formulas is
formalized in Algo. 1. The inputs of the algorithm consist of the NL descrip-
tion of the task (taskNL), sample data for each atomic predicate (sampleAtoms)
and operator (sampleOps) that we generate manually, and a threshold ϱ on the
confidence of an atom predictor.

We first generate a synthetic dataset for atom predictor (AtomPredictor) us-
ing a GPT-3 based paraphrase generator (GPT3ParaphGen) and train a model
to predict likely atoms from individual verb phrases.2 For a given NL descrip-
tion, verb phrases, conjunctions and adverbs are extracted and matched with
atoms and operators. Candidate PSTL formulas of bounded lengths are then
enumerated using predicted atoms and operators.

We now explain each part of Algo. 1:

Algorithm 1: Natural Language to PSTL algorithm
Input: taskNL, sampleAtoms, sampleOps, ω=0.5

Output: PSTLFormulas

// Generate data for atom predictor

1 atoms := GPT3ParaphGen(sampleAtoms)
2 trainAtoms, testAtoms := TrainTestSplit(atoms)
3 AtomPredictor := train(trainAtoms) // Train

4 Accuracy := test(testAtoms) // Test

// Avg. embedding for each operator

5 opEmbeddings := computeOpsBertEmbeddings(sampleOps)
6 taggedTokens := partOfSpeechTagger(taskNL)

// Extract verb phrases, conjunctions and adverbs based on the tags

7 vPhrases, Conjs, Advbs := NLSplitter(taggedTokens)
// Find best atoms

8 for vPhrase → vPhrases do // Find best atoms

9 atom, confidence := AtomPredictor(vPhrase) if confidence ↑ ω then

10 vPhrase := ParaphrasedByUser(vPhrase)
11 atom, confidence := AtomPredictor(vPhrase)

// Find best operators

12 ops := findBestOps(opEmbeddings, Conjs, Advbs)
// Bounds on the length of PSTL formula

13 l, u := 2·|vPhrases|↓1, 2·|vPhrases|+|Conjs|+|Advbs|
// Enumerative, interactive PSTL synthesis

14 PSTLFormulas := genPSTLEnum(atoms, ops, l, u)

2 We denote a verb phrase loosely as a group of words that contains a verb, such as
“turn on the lamp,” “if fire is on,” and “open the door.”

Systematically translating Robot Task Objectives to STL 7

“Turn on the
lamp and pick
up the cube”

Natural
Language

Demo

NL
Splitter

Atom &
Operator
Predictor

Verb Phrases: ‘turn
on the lamp’ ;
‘pick up the cube’

Conjunctions: ‘and’
Adv: -

PSTL
Generator

Robot: Should the tasks ‘turn on
the lamp’ and ‘pick up the cube’
run in sequence?
User: Yes

Atoms:
 !"#$%& ≥ 0,

*+,#%&-./.+ ≥ 0

Ops: ∧	

PSTL to
STL

2! = !"#$%& ≥ 0 ∧ *+,#%&-./.+ ≥ 0	
2" = !"#$%& ≥ 0 ∧ 4# *+,#%&-./.+ ≥ 0

2$ = 4#(!"#$%& ≥ 0 ∧ 4#(*+,#%&-./.+ ≥ 0))	

Robot: Which cube do you mean?
User: Purple
Robot: In how many seconds should the first task
finish?
User: 15 seconds
Robot: In how many seconds after the first task is
done should the second task finish?
User: 10 seconds

Off-the-shelf
RL2%&'(= 4),+, (!"#$%& ≥ 0) ∧

4),+) (*+,#%&-./.+(78!,97/,) ≥ 0	

Optimal
Policy

Fig. 3. We infer a STL formula εbest = F[0,15](lampOn ↔ 0 ↗
F[0,10](itemOnRobot(purpleCube) ↔ 0)) and an optimal policy from a given nat-
ural language description “Turn on the lamp and pick up the cube”, a demonstration
(—), and interactions with the user. NL splitter extracts components of the Natural
Language (i.e., “Turn on the lamp”, “and”, “pick up the cube”). Each component
is mapped to an atom or operator using the Atom and Operator Predictors {“Turn
on the lamp”:lampOn ↔ 0, “and”:↗, “pick up the cube”:itemOnRobot ↔ 0}. Next,
candidate PSTL formulas are generated from the predicted atoms and operators.
Asking questions from the user can help learn parameters of PSTL formulas and
therefore, learning the best STL formula. Finally, Deep RL techniques are employed
to learn an optimal policy from the learned STL formula.

Synthetic Data Generation. Translation to STL can prove challenging be-
cause of the scarcity of training data. We overcome the brittleness of a language-
to-STL predictor based on hand-crafted grammar [12] using GPT-3 [5] as a
paraphrase generation tool for data augmentation over a small manual set. This
corresponds to lines 1-2, where synthetic data is generated using GPT-3 based
paraphrasing for the atom predictor.

Then, we feed manually generated verb phrases corresponding to STL atoms
in our grid world as input and check the paraphrasing quality of the GPT-
3 outputs. For the grid world demonstrated in Fig. 2, there are a total of 15
atoms, and we generate 108 verb phrase samples for these atoms. For example,
our GPT-3-based paraphrase generator gets “Turn o! the fire” as input and
generates “Extinguish the fire” as one output paraphrase, and both can be paired
with the atom fireO! as training data.

Atom Predictor. Given a set of verb phrases and their corresponding atomic
formulas from the aforementioned data generation, we learn a model using
DIET [6], that given a verb phrase, can output the most similar atom to the verb
phrase. DIET is a lightweight transformer-based architecture that outperforms

8 Mohammadinejad et al.

and is about six times faster to train than BERT [9]. We use BERT for opera-
tor prediction. DIET employs a Conditional Random Field (CRF) tagging layer
on top of the transformer output and a multi-task loss function, which helps in
predicting entities in a sequence. We trained DIET for 100 epochs, which took
less than 1 minute and resulted in training accuracy of 100% and test accuracy
of 92%. We reserve 80% of the data generated by GPT-3 for training and 20%
for validation. This part of the algorithm is detailed in lines 3- 4.

Operator Predictor. First, we map each operator with a few words in natural
language that correspond to that operator. For example, ‘and’ and ‘and then’
both correspond to the ⇒ operator. The word embedding of each operator is
then computed as the average BERT embedding of the words corresponding to
that operator. The most similar operator contains the greatest cosine similarity
with each conjunction or adverb. This process is described in lines 5-6.

Natural Language Splitting. To extract verb phrases, we first run a part-
of-speech tagger, Flair [1]. It is a state-of-the-art tagger based on contextual
string embeddings and neural character language models. We divide the language
description based on the position of verbs, resulting in, for example, “turn on
the lamp” and “pick up the cube”. We extract conjunctions from the words that
connect the verb phrases, such as ‘and’. any adverbs (for instance, ‘Always’ can
correspond to the globally operator G). We try to match each verb phrase with
an atom using the trained atom predictor. Each conjunction or adverb is matched
with an operator using the cosine similarity between the operators’ and words’
BERT embeddings. We always add F to the list of candidate operators because it
is a common operator3. In our running example, we extract atoms = [lampOn ≃
0, itemOnRobot ≃ 0] and operators = [⇒ ,F]. If the confidence of verb phrase
to atom correspondence is low (< 0.5), we ask the user to paraphrase the word
sequence that has low confidence. This procedure is reflected in lines 7-11.

Explainability. Next, the extracted verb phrases, conjunctions and adverbs
are mapped to atoms and operators using the trained Atom and Operator Pre-
dictors (12 - 13). This gives us an explanation dictionary that provides clarity
on the decisions of DialogueSTL. For our running example: {“Turn on the
lamp”: lampOn ≃ 0, “and”: ⇒, “pick up the cube”: itemOnRobot ≃ 0} is the
generated explanation dictionary. This dictionary can help us repair the tool if
an incorrect STL formula is predicted. For example: if the atom lampOn ≃ 0 is
incorrectly predicted as fireOn ≃ 0, we will need to improve the robustness of
Atom Predictor. This is one of the advantages of our tool compared to DeepSTL,
which is completely black-box.

PSTL Generation. To enumerate possible PSTL formulas, we must specify
the upper and lower bounds of their lengths. We consider the lower bound as
l = |vPhrases| + |vPhrases| ∝ 1 because n verb phrases need n ∝ 1 connectors.
The upper bound is u = 2 · |vPhrases| + |Conj| + |Adv|- we multiply |vPhrases|
by 2 because each verb phrase can require a F operator; each conjunction or
adverb might also be converted to an operator. Next, we use systematic PSTL

3 Users tend not to specify an explicit word that corresponds to the eventually operator
F, even if they do expect the robot to perform the task eventually.

Systematically translating Robot Task Objectives to STL 9

enumeration [17] to generate candidate PSTL formulas within the range l and u

using the extracted atoms and operators in increasing order of their length. We
remove enumerated PSTL formulas that do not contain all the atoms or contain
more than one instance from each atom. 14

For instance, in section 2, the PSTL formula F[0,ε](¬(robotAt(a,b) ≃ 0) ⇑
robotAt(c,d) ≃ 0) can be derived through an enumeration process. This process
utilizes the atoms robotAt(a,b) ≃ 0 and robotAt(c,d) ≃ 0) where a, b, c, d serve
as parameters. The formula incorporates both unary and binary operators to
construct the logical expression.

Causal and Temporal Dependency. We shrink the space of candidate PSTL
formulas using the idea of causal or temporal dependency between atoms. Atom2

is causally dependent on Atom1 if Atom1 should happen before Atom2, which
eliminates formulas such as F(Atom1) ⇒ F(Atom2) and Atom2 ⇒ F(Atom1). In
our example, we can ask the user whether the tasks “turn on the lamp” and “pick
up the cube” should run in sequence or not. Alternatively, we could ask user if
“turn on the lamp and then pick up the cube” is acceptable or not. If the answer
is “Yes”, this means that the atom itemOnRobot ≃ 0 is causally dependent on
lampOn ≃ 0, and hence, formulas F(lampOn ≃ 0) ⇒ F(itemOnRobot ≃ 0) and
itemOnRobot ≃ 0 ⇒ F(lampOn ≃ 0) would be omitted. In this specific example,
the reasoning for causal dependency is that if room is dark, it would be di”cult
for the robot to identify the cube and pick it up. From the nine generated PSTL
formulas, six are removed resulting in three remaining candidate PSTL formulas.

ε1 = lampOn ≃ 0 ⇒ itemOnRobot ≃ 0

ε2 = lampOn ≃ 0 ⇒ FI(itemOnRobot ≃ 0)

ε3 = FI(lampOn ≃ 0 ⇒ FI(itemOnRobot ≃ 0))

4 DialogueSTL: Selecting Correct STL

We find the parameters of the PSTL candidates by searching in the initial lan-
guage description and by interacting with the user (Algo. 2). We use 4 question
types: order of tasks, atom parameters, operator parameters, and for paraphras-
ing a verb phrase.

DialogueSTL takes positive and negative demonstrations as input. Asking
the user to generate many demonstrations makes for a tedious interface. We use
only a few demonstrations from the user and use those to automatically generate
more negative demonstrations.

To generate negative examples, we use the principle of “no excessive ef-
fort” [11], which means that any prefix of the demonstrated positive example is
assumed insu”cient and considered a negative example. The intuition is that if
a prefix of d would already be a good example, then the user would not have
given the full demo d. In our example if the full demonstration is the robot
turning on the lamp and then picking up the cube, a prefix where the robot
only turns on the lamp without picking up the cube would be considered a neg-
ative example. This approach ensures that partial behaviors that do not meet

10 Mohammadinejad et al.

the full requirements are marked as negative, helping refine the STL formula to
accurately capture the desired behavior.

To convert each PSTL formula to its corresponding STL formula, all param-
eter values must be discovered. For instance, operator F needs a time interval
and atom itemOnRobot ≃ 0 requires the name of the item that should be picked
up. We search for parameter values in NL description, and if any of the param-
eter values cannot be found, we find it by interaction with user. We replace the
parameter valuations in PSTL formulas which result in STL candidates. Finally,
we choose the STL formula that satisfies positive demos and does not satisfy
the negative demos. In our running example, among the three candidate STL
formulas, ε3 is chosen as the best STL formula.

If no STL formula can be found, it may be that the language description
was not correctly split into its components, or that one or more of the predicted
atoms and operators were not correct. In the future, we can improve the split-
ting algorithm by learning from incorrect predictions, and use beam search in
enumeration to move to the next highest ranking atom or operator when the
first set fails.

For checking whether a demo satisfies a STL formula we have to compute
the satisfaction degree or robustness of its atoms and then use Breach [10] to
compute the satisfaction of the entire formula. For instance, the satisfaction
degree of the atom lampOn ≃ 0 is computed based the distance of the robot to
lamp and the action of turning the lamp on after the robot reaches the lamp.

5 Learning optimal policies

Previous works have used the robustness of an STL formula, or the signed dis-
tance of a given trajectory from satisfying or violating a given formula, as rewards
to guide the RL algorithm [19,4]. Here, we only provide an example of learning
optimal policy from a given STL formula using those existing techniques. We
use Deep Q-Learning [16] because of scalability to environments with a large
number of states. Even in our grid simple world environment (Fig. 2), there are
more than 8 billion states.4

The algorithm takes the STL specification of the task εtask, the goal state and
the hyper-parameters (i.e.,M , C, ς, and etc.) as input, and generates the optimal
policy that respects εtask as output. The main RL loop runs for |episodes|. In
each episode, first, the state is set to initial state and the partial trajectory is
set to ↗. While the robot has not reached the final state or maximum number
of states is not reached, the robot explores the grid environment and the reward
is computed as robustness of the partial trajectory with respect to εtask. The
robot experiences are recorded in replay memory to be used later for training
the Q network. Whenever the replay bu!er size exceeds M , we start training the
Q network using the bellman equation. We update the weights of target action-
value function Q̂ with the weights of Q in every C episodes. For our running

4 Each state is a tuple of 16 elements consist of robot and each of the items’ (door key,
green and purple cube) positions, state of the lamp and fire (on or o”), and state of
the door (open or close).

Systematically translating Robot Task Objectives to STL 11

Algorithm 2: Learning the best STL formula
Input: taskNL, atoms, ops, PSTLFormulas, Demos d

Output: εbest

// Generate more positive, negative demos

1 d
+
,d

→ := generateMoreDemos(d)
// Finding atoms’ parameters

2 for atom → atoms do

3 atomParams := findAtomParams(taskNL, atom)
4 if atomParams not found then

5 atomParams := getParamsByInteractionWithUser()

// Finding operators’ parameters

6 for op → ops do

7 opParams := findOpParams(taskNL, op)
8 if opParams not found then

9 opParams := getParamsByInteractionWithUser()

10 for ε(p) → PSTLFormulas do

// Set parameters of the PSTL formula

11 ε(v(p)) := setParams(ε(p), atomParams, opParams)
// Check if the STL formula ε(v(p)) satisfies positive demos and

does not satisfy negative demos

12 if ε(v(p)) ↫ d
+

and ε(v(p)) ⊋ d
→

then

13 εbest := ε(v(p))
14 return εbest

15 return ↘

example, with εtask = F[0,15](lampOn ≃ 0 ⇒F[0,10](itemOnRobot(purpleCube) ≃
0)), the reward converges in less than 15000 episodes, and the learned policy is
illustrated in Fig. 4.

6 Experiments

To evaluate DialogueSTL, we qualitatively and quantitatively examine its
performance in our gridworld (Fig. 2) on natural language specifications whose
underlying STL formulas exhibit various qualities. The software to reproduce the
results is available at: https://github.com/saramohammadinejad/DialogueSTL.

Table 1 shows a set of manually curated natural language sentences describ-
ing a variety of tasks and user constraints paired with the most frequent STL
formulas ultimately predicted by DialogueSTL. We use the GPT-3 based para-
phrase generator to generate 142 paraphrases each for the sample sentences in
Table 1. We also design an Oracle user to interact with DialogueSTL to an-
swer posed interaction questions. The Oracle user is a simple, rule-based program
that provides the correct answer to any given question about the true, underlying
STL formula. Table 1 shows the source language input, before paraphrasing, the

12 Mohammadinejad et al.

Fig. 4. A demonstration of the learned policy (—) from the εtask = F[0,15](lampOn ↗
F[0,10](itemOnRobot(purpleCube))).

number of provided demonstrations, and the DialogueSTL average number of
enumerated formulas, user interactions, success rate, and run-time.5

6.1 Results Across Description Types

User Constraints. A human (oracle) provides a general constraint for a task
such as “Always don’t run into walls”, and one positive demonstration that
satisfies the constraint and negative one that does not satisfy or violates it.
The human user is asked “For how many seconds do you want the constraint
to be satisfied?”, and answers “1000 seconds”, and so the best STL formula
is predicted as ε = G[0,1000](¬(robotAtWall ≃ 0)): “Always, in the next 1000
seconds, the robot should not run into walls”.

Single Tasks. A human user provides a single task, such as “Pick up the purple
cube”, and a positive demonstration of the task. Negative examples are generated
from this positive example based on the aforementioned principle of ‘no excessive
e!ort’. The user is asked about timing requirements, such as: “In how many
seconds should the robot complete the task?”, and in this case answers “12
seconds”. The formula ε = F[0,12](itemOnRobot(PurpleCube) ≃ 0) is predicted,
which means “Within the next 12 seconds, the purple cube should be picked up
by the robot”.

Sequence of Tasks. A sequential task, such as “Go to location (7, 4) and
pick up the green cube”, requires the robot to do one thing before another—a
temporal dependency. The STL formulas that do not give such guarantee can be
eliminated from the candidate formulas, and in this caseDialogueSTL predicts
F[0,10](robotAt(7,4) ≃ 0 ⇒ F[0,4](itemOnRobot(greenCube) ≃ 0)): “In the next 10
seconds, the robot should reach to location (7, 4) and after robot reaches (7, 4),
it should pick up the green cube in the next 4 seconds”.

Another example of a sequential task is “Turn on the lamp before picking
up the purple cube”. The word “before” implies the temporal dependency, and
the formula predicted is F[0,12]((lampOn ≃ 0)U[0,8](itemOnRobot(purpleCube) ≃
0)): “Turn on the lamp” happens in the past of “pick up the purple cube”.

5 We run the experiments on an Intel Core-i7 Macbook Pro with 2.7 GHz processors
and 16 GB RAM.

Systematically translating Robot Task Objectives to STL 13

—User Input— —DialogueSTL—

Type Pre-paraphrase Natural
Language

#Ds #EFs #UIs SR RT Most Frequent STL Prediction Correctness

C
Always don’t run into walls. 2 7.81 1.0 90% 5.36 ¬(F[0,1000](robotAtWall)) ↬

Always do not walk into wa-
ter.

2 12.72 1.0 90% 3.94 ¬(F[0,1500](robotAtWater)) ↬

S
Pick up the purple cube. 1 2.0 1.09 100% 3.71 F[0,12](itemOnRobot(purpleCube)) ↬

Turn o” the fire. 1 2.0 1.0 90% 3.53 F[0,5](fireO!) ↬

Q

Open the door and then
charge yourself.

1 3.0 3.18 100% 4.12 F[0,8](doorOpen↗
F[0,6](chargerPlugged))

↬

Go to location (7, 4) and
pick up the green cube.

1 4.16 2.5 58% 4.13 F[0,10](robotAt(7,4)↗
F[0,4](itemOnRobot(greenCube))

↬

Turn on the lamp before
picking up the purple cube.

1 11.8 2.2 100% 9.50 F[0,12](lampOn U[0,8]

itemOnRobot(purpleCube))
↬

Open the gate before picking
up the green cube.

1 10.44 2.11 88% 8.56 F[0,8](doorOpened U[0,5]

itemOnRobot(greenCube))
↬

M
Turn on the lamp or turn on
the fire.

2 7.0 1.0 100% 4.65 F[0,12](lampOn ≃ fireOn) ↬

Sit on the chair or pick up
the purple cube.

2 7.14 1.14 100% 6.65 F[0,15](robotSittingOnChair≃
itemOnRobot(purpleCube))

↬

D
If gate is open, close it. 1 32.44 1.0 0% 6.68 F[0,10](doorOpen =⇐ doorClosed) ϑ

If fire is on, turn o” the fire,
else pick up the key.

1 1253.33 1.16 0% 67.68 F[0,10]((fireO! =⇐ fireOn)
=⇐ itemOnRobot)

ϑ

Table 1. DialogueSTL performance on sample natural language inputs across 142
GPT-3 paraphrases of the inputs for fixed user demonstrations per row (#Ds). We
report the average number of enumerated formulas (#EFs), average user interactions
(#UIs) to select a final formula, success rate (SR) of finding the exact match correct
formula, and average runtime in seconds(RT). The task types include (C)onstraint,
(s)ingle, se(Q)uence, (M)ultiple-choice and con(D)itional. Note that “ ↔ 0” is removed
from all atoms for brevity.

Multiple-choice Tasks. “Turn on the lamp or turn on the fire” means that
the robot is required to complete at least one of the two tasks. In such cases, the
user can provide two positive demonstrations showcasing the alternative goals.
The STL formula predicted for this example is F[0,12](lampOn ≃ 0 ⇑ fireOn ≃ 0):
“In the next 12 seconds, the lamp should be on or the fire should be on”.

Conditional Tasks. “If gate is open, close it” is an example of a conditional
task; the robot should accomplish a task only if a condition is satisfied. For
conditional tasks, our tool fails to predict the correct STL formulas.

6.2 Comparison with DeepSTL

The main di!erences between DialogueSTL and DeepSTL are:

– DialogueSTL splits the sentence and learns from its components but Deep-
STL learns from the entire sentence.

14 Mohammadinejad et al.

Tool Avg SR Avg ACC Avg test time (seconds)

DialogueSTL 72% 78% 5.9
DeepSTL 20% 54% 0.17

Table 2. Success rate (SR) and accuracy (ACC) comparison of DialogueSTL and
DeepSTL on natural language inputs across 142 GPT-3 generated paraphrases.

– DialogueSTL needs a few demonstrations for finding the best STL formula,
but DeepSTL only needs NL description of the task.

– DeepSTL is a fully black-box model but DialogueSTL generates explanation
dictionaries.

Here, we show that DialogueSTL outperforms DeepSTL in terms of train-
ing runtime and accuracy with the cost of increased testing runtime. Dia-
logueSTL’s training data is a total of 108 verb phrases for 15 atoms and 18
adverbs and conjunctions for the 7 operators. Since DeepSTL needs complete
sentences for training, we use an enumerative approach by systematically apply-
ing production rules to enlist valid sentences from the DialogueSTL’s training
data which results in 250000 sentences with their corresponding STL formulas
We randomly sample 120000 instances (the dataset size used in DeepSTL paper),
and split it to 80% for training, 10% for validation, and 10% for testing. We train
the DeepSTL tool for 60 epochs on our generated training data with exact same
transformer structure and hyper-parameters used in the DeepSTL paper. We
also tried di!erent sets of hyper-parameters but the default hyper-parameters
used in the DeepSTL paper resulted in the best accuracy. The training process
takes 23.64 hours resulting in the train, validation and test accuracy of 97.7%,
97.6% and 66.0%, respectively. It is possible to decrease the training time to
several hours by using GPUs but still the training time is not comparable with
DialogueSTL’s which is less than 1 minute. The reason for discrepancy be-
tween train/validation and test accuracy might be the use of teacher forcing
technique during train/validation.

Next, we test the trained model on GPT-3 generated paraphrases to make a
comparison with our tool. We use two metrics for comparing the performances:
(1) success rate (SR) which is the percentage of correctly predicted STL formulas
(2) accuracy (ACC) which measures how similar the predicted STL formula is to
ground truth STL formula. DialogueSTL outperforms DeepSTL in both SR
and ACC with the cost of increased test time. The detailed results are presented
in Table 2. The reason for large test time is thatDialogueSTL only learns Atom
Predictor and Operator Predictor during training phase and the formula itself
should be learned during testing. Splitting the sentence to its components, learn-
ing the formula parameters, enumerating candidate STL formulas and choosing
the one that satisfies user’s demonstrations are the steps that happen during
testing.

Systematically translating Robot Task Objectives to STL 15

6.3 Limitations & Future work

DialogueSTL currently lacks a large scale dataset for NL-TL transformation
such as presented in [8] limiting generalizability across domains. While it pro-
vides for user-in-the-loop clarifications and feedback and it does not yet incorpo-
rate more sophisticated error corrections and mechanisms such as autoregressive
re-prompting [7] which can hinder accuracy. Furthermore, we note that Dia-
logueSTL has not yet extended to practical implementations and robots in
diverse environments and future work will aim to expand its utility to broader
and more varied contexts.

For the conditional task “If fire is on, turn o! the fire, else pick up the key”,
DialogueSTL fails to predict a satisfying formula. The ground truth STL for-
mula for this sentence is G((fireOn ≃ 0 =↙ F(fireO! ≃ 0)) ⇒ (fireO! ≃
0 =↙ F(itemOnRobot(key) ≃ 0)). DialogueSTL fails to discover this formula
because there are no key words in the sentence to imply the G and ⇒ opera-
tors. In the future, gathering such failure cases to create augmented data may
fill such gaps. Further, user questions could be designed to recover from such
missing operator corner cases. Relatedly, for the task “if fire is o!, turn it on”,
DialogueSTL incorrectly predicts F[0,8](fireO! ≃ 0 =↙ lampOn ≃ 0). The
atom lampOn ≃ 0 is selected instead of fireOn ≃ 0 because “turn it on” does
not explicitly say “turn the fire on”. Co-reference resolution steps could mitigate
this issue.

7 Related work & Conclusions

Related work. Prior work has used STL for reinforcement learning applica-
tions. Quantitative semantics of STL can be used as reward functions for eval-
uating robotic behaviors [4]. STL formulas can be used to rank the quality of
demonstrations in robotic domain and also computing the reward for RL prob-
lems [19]. However, those works put the burden of specifying the correct STL
formulas on users, and can require 3x more demonstrations than DialogueSTL
despite using a similar environment [19].

There has been a tremendous e!ort in learning temporal logic languages from
natural human languages [13,18,20]. These works variously assume a particular
format for natural language, are limited to a specific fragment of formal logic,
or have scalability and robustness issues. The authors of [3] provide a compre-
hensive unified framework that includes qualitative, real-time, and probabilistic
property specification patterns. Our approach, DialogueSTL, is interactive
and explainable, making it more accessible to non-experts. LtlTalk proposed by
[11] focuses on linear temporal logic (LTL) and uses optimization modulo theo-
ries for generating LTL specifications and leverages a domain-specific language
to expand its expressiveness. While they focus on a single example trace, ours
requires more demonstrations and clarifications from the user. However, we also
demonstrate practical applications for the synthesized STL using reinforcement
learning to learn optimal policies. DeepSTL [12] is another method, that re-
lies on grammar-based generation of synthetic data and transformer models for
translating English to STL, while DialogueSTL incorporates user-in-the-loop

16 Mohammadinejad et al.

clarifications and demonstrations to improve the accuracy and practicality of the
generated STL formulas. Our work addresses these shortcomings by operating
over the space of all possible STL formulas, leveraging interaction with the user
to repair ambiguities, and scaling to a larger state space.

There is recent work [8] focusing on developing an accurate and generalizable
framework for transforming NL instructions into temporal logic by creating a
large dataset of NL-TL pairs and fine-tuning T5 models achieving high accu-
racy with minimal training data. There is also work [7] centered on enhancing
human-robot interactions by translating NL task descriptions into an interme-
diate task representation using few-shot learning and Task-and-Motion Plan-
ning (TAMP) algorithms, significantly improving task completion through error
correction techniques. Lang2LTL [14] grounds navigational commands to LRL
using LLMs without prior language data, demonstrating state-of-the-art gen-
eralization in diverse environments and practical implmentations on a physical
robot. DeepSTL [12], translates informal English requirements to STL by train-
ing a sequence-to-sequence transformer on synthetic data generated from a hand-
defined STL-to-English grammar. DeepSTL is restricted to a specific fragment of
STL covered by the hand-defined grammar. For example, it allows the conjunc-
tion and disjunction of only two atomic propositions, and some nested formulas
are not supported. In Section 6, we show that the proposed DialogueSTL
achieves a better accuracy compared to DeepSTL and is significantly faster to
train. Furthermore, previous approaches are mostly black-box approaches while
DialogueSTL generates explanation dictionaries that gives transparency into
the decision of the model, i.e., how di!erent parts of the sentence are mapped
to di!erent components of the predicted STL formula.

Conclusions. In this work, we have proposed an interactive and explainable
approach, DialogueSTL, to learn STL formulas from natural language de-
scriptions of robotic tasks and demonstrations. We used part-of-speech tagging
to extract sentence components and used the GPT-3 language model to gener-
ate data automatically given a small sample of manually generated data. Then,
transformer models are used for detecting the best atoms and operators for gen-
erating candidate PSTL formulas. Finally, demonstrations provided by the user
can help learn the best STL formula for a given task. Our tool has a number of
advantages compared to previous works such as addressing ambiguity of natural
language by interaction with user, considering the space of all STL formulas,
and explainability.

References

1. Akbik, A., Bergmann, T., Blythe, D., Rasul, K., Schweter, S., Vollgraf, R.: Flair:
An easy-to-use framework for state-of-the-art nlp. In: NAACL 2019, 2019 Annual
Conference of the North American Chapter of the Association for Computational
Linguistics (Demonstrations). pp. 54–59 (2019)

2. Asarin, E., Donzé, A., Maler, O., Nickovic, D.: Parametric identification of tempo-
ral properties. In: International Conference on Runtime Verification. pp. 147–160.
Springer (2011)

Systematically translating Robot Task Objectives to STL 17

3. Autili, M., Grunske, L., Lumpe, M., Pelliccione, P., Tang, A.: Aligning qualitative,
real-time, and probabilistic property specification patterns using a structured en-
glish grammar. IEEE Transactions on Software Engineering 41(7), 620–638 (2015)

4. Balakrishnan, A., Deshmukh, J.V.: Structured reward shaping using signal tempo-
ral logic specifications. International Conference on Intelligent Robots and Systems
(IROS) (2019)

5. Brown, T.B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Nee-
lakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot
learners. arXiv preprint arXiv:2005.14165 (2020)

6. Bunk, T., Varshneya, D., Vlasov, V., Nichol, A.: Diet: Lightweight language un-
derstanding for dialogue systems. arXiv preprint arXiv:2004.09936 (2020)

7. Chen, Y., Arkin, J., Dawson, C., Zhang, Y., Roy, N., Fan, C.: Autotamp: Autore-
gressive task and motion planning with llms as translators and checkers (2024)

8. Chen, Y., Gandhi, R., Zhang, Y., Fan, C.: NL2TL: Transforming natural lan-
guages to temporal logics using large language models. In: Bouamor, H., Pino,
J., Bali, K. (eds.) Proceedings of the 2023 Conference on Empirical Methods
in Natural Language Processing. pp. 15880–15903. Association for Computa-
tional Linguistics, Singapore (Dec 2023). https://doi.org/10.18653/v1/2023.
emnlp-main.985, https://aclanthology.org/2023.emnlp-main.985

9. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805
(2018)

10. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid
systems. In: International Conference on Computer Aided Verification. pp. 167–
170. Springer (2010)

11. Gavran, I., Darulova, E., Majumdar, R.: Interactive synthesis of temporal speci-
fications from examples and natural language. Proceedings of the ACM on Pro-
gramming Languages 4(OOPSLA), 1–26 (2020)

12. He, J., Bartocci, E., Ničković, D., Isakovic, H., Grosu, R.: From english to signal
temporal logic. arXiv preprint arXiv:2109.10294 (2021)

13. Kress-Gazit, H., Fainekos, G.E., Pappas, G.J.: Translating structured english to
robot controllers. Advanced Robotics 22(12), 1343–1359 (2008)

14. Liu, J.X., Yang, Z., Idrees, I., Liang, S., Schornstein, B., Tellex, S., Shah, A.:
Grounding complex natural language commands for temporal tasks in unseen en-
vironments (2023)

15. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems,
pp. 152–166. Springer (2004)

16. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G.,
Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level
control through deep reinforcement learning. nature 518(7540), 529–533 (2015)

17. Mohammadinejad, S., Deshmukh, J.V., Puranic, A.G., Vazquez-Chanlatte, M.,
Donzé, A.: Interpretable classification of time-series data using e!cient enumera-
tive techniques. In: Proc. of HSCC. pp. 1–10 (2020)

18. Nelken, R., Francez, N.: Automatic translation of natural language system spec-
ifications into temporal logic. In: International Conference on Computer Aided
Verification. pp. 360–371. Springer (1996)

19. Puranic, A., Deshmukh, J., Nikolaidis, S.: Learning from demonstrations using
signal temporal logic. In: Proceedings of the 2020 Conference on Robot Learning
(2021)

20. Ranta, A.: Translating between language and logic: what is easy and what is dif-
ficult. In: International Conference on Automated Deduction. pp. 5–25. Springer
(2011)

https://doi.org/10.18653/v1/2023.emnlp-main.985
https://doi.org/10.18653/v1/2023.emnlp-main.985
https://doi.org/10.18653/v1/2023.emnlp-main.985
https://doi.org/10.18653/v1/2023.emnlp-main.985
https://aclanthology.org/2023.emnlp-main.985

	Systematic Translation from Natural Language Robot Task Descriptions to STL

