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Abstract. Predictive monitoring (PM) aims at predicting at runtime
the satisfaction of a desired property from the current state of the sys-
tem under analysis. PM methods need to be e!cient, to enable timely
interventions against predicted violations, and reliable, given the safety-
criticality of the problem. Quantitative predictive monitoring (QPM) fo-
cuses on stochastic processes, supports rich specifications expressed in
Signal Temporal Logic (STL) and provides a quantitative measure of
satisfaction by predicting the quantitative (a.k.a. robust) STL seman-
tics, either spatial or temporal. Our solution to QPM integrates machine
learning and conformal inference to derive prediction intervals that are
highly e!cient to compute and with probabilistic guarantees of cover-
ing the STL robustness values relative to the stochastic evolution of the
system. Conformal guarantees are in general only marginal. However,
conditional guarantees can significantly enhance the consistency and re-
liability of the resulting monitor. To this end, we equip QPM with confor-
mal techniques to ensure conditional validity of the prediction intervals,
i.e., such that the probabilistic guarantees hold given some conditions of
the system, e.g. the current state or the dynamical mode of the system.

Keywords: Predictive Monitoring; Stochastic Process; Conformal In-
ference; Conditional Validity.

1 Introduction

Consider a system operating in a potentially dangerous environment and assume
there is a formal way to define what poses a danger to the system. The overarch-
ing aim of predictive monitoring (PM) [5,6,7] is to predict at runtime, meaning
as the system evolves, if a safety violation will take place in the nearby future.
Unlike traditional monitoring [3], PM has the potential to detect failures before
they occur, thereby enabling preemptive countermeasures, such as switching to a
fail-safe mode [22]. Moreover, if the system follows stochastic dynamics, we need
to retrieve a measure of risk rather than a yes/no answer. To enable e!ective
deployment at runtime, PM methods need to be e"cient and respond quickly so
that any system failure can be prevented in time.

Given a model of the system, performing model-checking at run-time would
provide a precise solution to the PM problem (precise up to the accuracy of the
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system’s model), but such a solution is computationally expensive in general un-
less the model is trivial or fully deterministic. In particular, when the system is
stochastic, a statistical model checking solution [30] would require simulating at
runtime a typically large number of Monte-Carlo trajectories to achieve desired
error levels. For this reason, a number of approximate PM techniques based on
machine learning have been recently proposed (see e.g. [23,29,11,18,4]), includ-
ing the so-called Neural Predictive Monitoring (NPM) method [5,6,7,8] and the
Quantitative Predictive Monitoring [9,16]. In NPM in particular, the predictive
monitor is a neural network classifier trained using data generated through a
model checker to predict for any system state whether or not the state satis-
fies some reachability property. To improve the reliability of the reachability
predictions, NPM relies on conformal prediction [2,28] to produce prediction re-
gions with guaranteed coverage and derive uncertainty measures used to infer
whether a particular prediction can be trusted. On a similar note, QPM focuses
on the predictive monitoring problem for stochastic processes and Signal Tem-
poral Logic (STL) [12] specifications. By predicting STL robustness values (both
in its spatial and temporal formulations), QPM provides key quantitative infor-
mation on the degree of property satisfaction which can be meaningfully used to
determine the extent of any corrective actions and enable e"cient online model
predictive control for STL [24]. For instance, depending on the specification ω, if
QPM predicts a high value of Rω, then little or no intervention might be needed,
while a low Rω value might require a more substantial or quicker intervention
to steer the system back to safety. QPM is inspired by NPM but it addresses
two significant limitations of the latter, which support only Boolean reachabil-
ity specifications (as opposed to the full spectrum of STL properties and their
quantitative interpretation) and cannot adequately deal with stochastic dynam-
ics. Moreover, QPM monitors both the STL space robustness and the STL time
robustness [12,25], which quantifies how much a signal can be perturbed in time
(as opposed to space) before a!ecting its Boolean satisfaction value. This allows
us to monitor the imminence of failures, thus providing crucial insights into the
available time for an intervention.

A major challenge when dealing with stochastic processes is that every state
induces a distribution of robustness values, relative to the future stochastic evo-
lution of the system from the current state of the system. In general, such dis-
tribution is analytically intractable and an accurate empirical estimate of such
conditional distribution can be very expensive to obtain, potentially requiring a
high number of Monte-Carlo simulations. Our approach overcomes this compu-
tational bottleneck by deriving monitors able to directly predict some relevant
quantiles of the conditional STL robustness distribution. Such quantiles have a
two-fold purpose. First, they provide a measure of risk [19,17]: for instance, if the
10%-quantile of Rω is zero, then “only” 10% of the system’s future trajectories
will violate ω (i.e., lead to a negative Rω), which, depending on the application,
can be interpreted as a low-risk scenario. Second, and most crucially, it allows
us to derive prediction intervals that cover a certain mass of probability. For
small ε, if the (ε/2, 1 → ε/2)-quantile interval for Rω is entirely above (below)
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zero, then we can be fairly confident that the system will evolve into satisfying
(violating) ω with high probability. On the other hand, intervals straddling the
zero denote states whose future trajectories may or may not violate the prop-
erty, which can be thus regarded as uncertain. To predict the quantiles reliably,
our approach builds on Conformalized Quantile Regression (CQR) [26], a re-
cent conformal inference technique that produces statistically valid prediction
intervals on top of quantile regression models. Crucially, this method provides
us with marginal probabilistic guarantees, in that, for an arbitrary significance
level ε, the resulting interval for Rω is guaranteed to cover the true STL ro-
bustness value with probability at least 1 → ε. With marginal guarantees, we
mean that the coverage probability is satisfied on average w.r.t. the state distri-
bution of the stochastic system. In this paper, we go beyond the marginal case
and study techniques to obtain prediction intervals with guaranteed conditional
coverage [13,14], meaning that guarantees are met by conditional distributions
and not only by the marginal one. In predictive monitoring applications, the
importance of conditional guarantees cannot be overstated, as they significantly
improve the monitor’s accuracy, reliability, and consistency. These stricter guar-
antees are particularly important in contexts where predictions drive critical
decision-making, risk management, and process optimization. Relying solely on
marginal guarantees could lead to catastrophic errors for a small proportion of
system states – errors that instead a conditionally valid monitor can prevent.
Furthermore, it is common for real-world datasets to display imbalances, where
marginal guarantees often fail to adequately cover less prevalent groups. In par-
ticular, we introduce input-conditional guarantees using a conformalized local-
ization technique [13,14] that reweights calibration samples based on a measure
of proximity with the considered test input, so that every test state is associ-
ated with a prediction interval with guaranteed quasi-input-conditional coverage.
We also extend the marginal guarantees of [9] to better address scenarios with
unbalanced datasets, where, e.g., trajectories satisfying the specification (a.k.a.
positive trajectories) outnumber those violating it (negative trajectories). In par-
ticular, we provide conformalized prediction intervals with sign-conditional cov-
erage guarantees, meaning that there is an equal probability of positive samples
being covered as there is for negative ones. Since failures are rare to observe,
this extension enhances the reliability of our QPM in detecting safety hazards.
This issue is particularly pronounced in predictive monitoring, where failures
may be rare. Implementing class-balanced guarantees e!ectively addresses this
challenge, ensuring the same coverage levels regardless of the satisfaction value.
We can also combine the two methods above to obtain prediction intervals that
o!er both sign- and input-conditional guarantees.

2 Problem Statement

We illustrate the predictive monitoring problem we target with QPM, after in-
troducing background on stochastic processes and Signal Temporal Logic.
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Fig. 1: Example of predictive

monitoring of a safety prop-

erty for deterministic (top) and

stochastic dynamics (bottom).

Running example. Consider a point moving at a
constant velocity on a two-dimensional plane (see
Fig. 1). Given the system’s current state s, a con-
troller regulates the yawn angle to avoid obstacles
(D1 and D2 in our example). The avoid property
can be easily expressed as an STL formula: ω :=
G ( (d(s, o1) > r1) ↑ (d(s, o2) > r2) ), where oi, ri de-
note respectively the centre and the radius of obstacle
i ↓ {1, 2}. Fig. 1 (top) shows the deterministic evolu-
tion for three randomly chosen initial states and an
intuition of the concept of spatial STL robustness, i.e.
how much we can perturb a trajectory with additive
noise before changing its truth value. Fig. 1 (bottom)
shows the evolution of stochastic dynamics for three
randomly initial states. The dashed lines denote the
upper and lower quantiles of the distribution over the
trajectory space.

2.1 Stochastic Processes

The systems we consider can be modeled as stochastic processes. A stochas-
tic process is defined as a collection of random variables indexed by some in-
dex set T . These random variables are defined on a common probability space
(ϑ,F ,P), where ϑ is the sample space, F is the ϖ-algebra and P is the probabil-
ity measure. We can denote the stochastic process as {S(t,ϱ), t ↓ T}. A random
variable S(t,ϱ) in the collection is thus a function of two variables t ↓ T and
ϱ ↓ ϑ. In our application, the index set is countable and represents discrete time
T = {0, 1, . . .}. Each random variable in the collection takes values in a space
S ↔ Rn, the state space of dimension n, that should be measurable. A discrete-
time step makes the stochastic process move from index i to index i+ 1. Given
a stochastic process {S(t,ϱ) : t ↓ T}, then for any point ϱ ↓ ϑ, the mapping
S(·,ϱ) : T ↗ S, is called a realization, or a sample trajectory of the stochastic
process {S(t,ϱ) : t ↓ T}. We assume that the dynamics of the system are Marko-
vian. This assumption is not strict as most systems of interest — Markov chains,
stochastic hybrid systems (without non-determinism), and stochastic di!erence
equations — are Markovian or can be made so by augmenting the state space.

2.2 Signal Temporal Logic

System requirements can be expressed via Signal Temporal Logic (STL) [20,12],
which enables the specification of properties of dense-time, real-valued signals,
and the automatic generation of monitors for testing properties on individual
trajectories. The rationale of STL is to transform real-valued signals into Boolean
ones, using formulae built on the following STL syntax :

ω := true | µ | ¬ω | ω ↑ ω | ω UI ω,
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where I ↔ T is a temporal interval, either bounded, I = [a, b], or unbounded, I =
[a,+↘), for any 0 ≃ a < b. Atomic propositions µ are (non-linear) inequalities
on the states of a signal s at a time t, µ = (g(s(t)) > 0), where g : S ↗ R
and s(t) is a state in S. From this essential syntax, it is easy to define other
operators, used to abbreviate the syntax in an STL formula: false := ¬true,
ω ⇐ ς := ¬(¬ω ↑ ¬ς), FI := true UIω and GI := ¬FI¬ω. Monitoring the
satisfaction of a formula is done recursively by leveraging the tree structure of
the STL formula. The satisfaction relation is defined as follows.

(s, t) |= µ ⇒ g(s(t)) > 0

(s, t) |= ¬ω ⇒ ¬((s, t) |= ω)

(s, t) |= ω1 ↑ ω2 ⇒ (s, t) |= ω1 ↑ (s, t) |= ω2

(s, t) |= ω1Ua,bω2 ⇒ ⇑ t→ ↓ [t+ a, t+ b] s.t. (s, t→) |= ω2↑
⇓ t→→ ↓ [t, t→], (s, t→→) |= ω1

Given a formula ω and a signal s over a bounded time interval, we can define
the Boolean satisfaction signal as φω(s, t) = 1 if (s, t) |= ω and φω(s, t) = 0
otherwise.

Quantitative semantics. The robustness of a trajectory quantifies the level of
satisfaction w.r.t. ω. Positive robustness means that the property is satisfied,
whereas negative robustness means that the property is violated. Robustness is
denoted as a function Rω : SH ⇔ T ↗ R that maps a given signal s of length
H, a formula ω and a time t to some real value, Rω(s, t) ↓ R. It measures
the maximum perturbation that can be applied to the signal without changing
its truth value w.r.t. ω. In particular, we distinguish between space robustness,
which deals with perturbations in the space dimension, and time robustness,
which deals with perturbations in time.

Similarly to the Boolean semantics, the quantitative semantics of a formula ω
over a signal s is defined recursively over the tree structure of the STL formula.

Space robustness is defined as a function Cω : SH ⇔ T ↗ R such that:

Cµ(s, t) = g(s(t))

C¬ω(s, t) =→ Cω(s, t)

Cω1↑ω2(s, t) =min(Cω1(s, t), Cω2(s, t))

Cω1U[a,b]ω2(s, t) = sup
t→↑[t+a,t+b]

(
min

(
Cω2(s, t

→), inf
t→→↑[t,t→]

Cω1(s, t
→→)
))

.

Similarly, time robustness captures the e!ect on the satisfaction of shifting the
signal in time. The (right) time robustness of an STL formula ω with respect to
a trace s at time t is defined by:

Q+
ω
(s, t) = φω(s, t) ·max{d ↖ 0 s.t. ⇓t→ ↓ [t, t+ d], φω(s, t→) = φω(s, t)}.
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While space robustness is most common, our QPM approach can support any
other kind of STL quantitative semantics, e.g., based on a combined space-
time robustness [12] or resiliency [10]. Hereafter, we represent a generic STL
monitor, encompassing either spatial or temporal quantitative satisfaction, as
Rω ↓ {Cω, Q

+
ω
}3. The sign of Rω is the Boolean satisfaction of signal s [12,25]:

Rω(s, t) > 0 ↙ (s, t) |= ω and Rω(s, t) < 0 ↙ (s, t) ∝|= ω.

2.3 Quantitative Predictive Monitoring

Given a stochastic process S = {S(t,ϱ), t ↓ T}, an STL requirement ω and
a state s0 ↓ S, the robustness over future evolutions of the system starting from
s0 is stochastically distributed according to the conditional distribution

P (Rω(s, 0) | s(0) = s0) ,

where s is a random signal given by the sequence of random variables
S :=(S(0, ·),S(1, ·), . . . ,S(H → 1, ·)). For time k, s(k) = S(k, ·) denotes the ran-
dom variable corresponding to the state at time k in s. This conditional distri-
bution captures the distribution of the STL robustness values for trajectories of
length H starting in s0.
We now formulate the quantitative predictive monitoring problem: from any
state s↓ of the stochastic process, we aim to construct a prediction interval
guaranteed to include, with arbitrary probability, the true STL robustness of
any (unknown) stochastic trajectory starting at s. A formal statement of the
problem is given below.
Problem 1 (Quantitative Predictive Monitoring). Given a discrete-time stochas-
tic process S = {S(t,ϱ), t ↓ T} over a state space S, temporal horizon H, a
significance level ε ↓ [0, 1] and an STL formula ω, derive a monitoring function
I producing regions for i.i.d. test trajectories s of the stochastic process S that
satisfy

Ps↔S

(
Rω(s, 0) ↓ I

(
s(0)

))
↖ 1→ ε. (1)

We will solve Problem 1 as a conditional quantile regression problem. This
boils down to learning, for a generic state s(0), an upper and a lower quantile of
the random variable Rω(s, 0) induced by s. We then use these two quantiles to
build the output of function I in s(0). To ensure that such an interval is well-
calibrated — meaning that the probabilistic guarantees are satisfied theoretically
and empirically — we resort to the framework of conformal prediction. These
machine-learning techniques are introduced in the next section.

Mode-conditional guarantees. The methods presented in [9] and [16] provide
two learning-based approaches to the QPM problem. In particular, [9] provides
a prediction interval with guaranteed coverage of the STL robustness values.
3 Time-robustness assumes discrete values, here we define Rω as a real-valued function

considering that Z → R.
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Fig. 2: Bi-modal scenario: dynamics

(top), robustness (bottom).

The second returns an interval centered
around the STL robustness of the expected
dynamics in expectation. Both methods work
well in general but they share the same limita-
tion, i.e., they fail to provide useful results in
multi-modal scenarios (as the ones shown in
Fig.2). In a scenario like the one in Fig.2, the
former would result in an extremely large in-
terval covering all the robustness values. The
latter would reconstruct the robustness of the
averaged signal, whose values are much di!er-
ent compared to the one observed in practice.
To this end, assume that robustness can be
divided into C modes and that there is a function ↼ : R ↗ {1, . . . , C} mapping
the robustness of every trajectory to its mode. We may be interested in obtaining
coverage guarantees over every mode, i.e., we may require that the prediction
intervals are 1 → ε accurate both when observations are in each mode. For in-
stance, the sign of robustness could identify two modes. Mathematically, mode-
conditional guarantees are formulated as follows: for every mode j ↓ {1, . . . , C}

Ps↔S

(
Rω(s, 0) ↓ I

(
s(0)

) ∣∣ ↼
(
Rω(s)

)
= j)

)
↖ 1→ ε. (2)

Input-conditional guarantees. Both (1) and (2) provide a notion of marginal
coverage, where coverage guarantees hold on average over the distribution of the
stochastic process trajectories. Below we formulate input-conditional guarantees,
which are stronger as they instead require the same level of coverage for every
initial state s↓ ′ S(0, ·):

Ps↔S

(
Rω(s, 0) ↓ I

(
s(0)

) ∣∣ s(0) = s↓
)
↖ 1→ ε, for all s↓ ↓ S. (3)

3 Background on Conformal Prediction

Consider a generic supervised learning setting where X denotes the input space,
Y the target space, and Z = X ⇔ Y . Let Z be the data-generating distribution,
i.e., the distribution of the points (x, y) ↓ Z. We assume that the target y of
a point (x, y) ↓ Z is the result of the application of a function f↓ : X ↗
Y , typically unknown or very expensive to evaluate. The goal of a supervised
learning algorithm is to find a function f : X ↗ Y that, from a finite set of
observations, learns to behave as similarly as possible to f↓ over the entire input
space. For an input x ↓ X, we denote with y the true target value of x and with
ŷ the prediction by f , i.e. ŷ = f(x). Test inputs, whose unknown true target
values we aim to predict, are denoted by x↓. For the sake of clarity, we start by
showing conformal prediction approaches for deterministic predictors and then
move to present Conformalized Quantile Regression (CQR) [26], an approach to
handle the stochastic case.
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Conformal prediction (CP) associates measures of reliability with any tradi-
tional supervised learning problem, either regression or classification [2,28]. CP
enriches point-wise predictions with prediction regions with guaranteed marginal
validity.

Definition 1 (Prediction region). For significance level ε ↓ (0, 1) and test
input x↓, the ε-prediction region for x↓, ↽ε(x↓) ↔ Y , is a set of target values
s.t.

P(x↓,y↓)↔Z(y↓ ↓ ↽ε(x↓)) ↖ 1→ ε. (4)

The idea of CP is to construct the prediction region by “inverting” a suitable
hypothesis test: given a test point x↓ and a tentative target value y→, we exclude y→

from the prediction region only if it is unlikely that y→ is the true value for x↓. The
test statistic is given by a so-called nonconformity function (NCF) ⇀ : Z ↗ R,
which, given a predictor f and a point z = (x, y), measures the deviation between
the true value y and the corresponding prediction f(x). In this sense, ⇀ can
be viewed as a generalized residual function. In other words, CP builds the
prediction region ↽ε(x↓) for a test point x↓ by excluding all targets y→ whose
NCF values are unlikely to follow the NCF distribution of the true targets:

↽ε(x↓) = {y ↓ Y : ⇀(x↓, y) ≃ Q(1→ ε;F)} , (5)

where F := 1
|Zc|+1

(∑
zi↗Zc

⇁ϑi +⇁↘
)

is the calibration distribution, with ⇁ϑi be-
ing the Dirac distribution centered at βi = ⇀(xi, yi) and Q is the quantile func-
tion. This prediction region is guaranteed to contain the true (unknown) value
y↓ with confidence 1 → ε. The probability term in Eq. (5) is often called the
p-value. From a practical viewpoint, the NCF distribution Pr(x,y)↔Z(⇀(x, y))
cannot be derived in an analytical form, and thus we use an empirical approxi-
mation derived using a sample Zc of Z. This approach is called inductive CP [21]
and Zc is referred to as calibration set. CP’s theoretical guarantees hold under
the exchangeability assumption (a “relaxed” version of i.i.d.) by which the joint
probability of calibration and test points is invariant to permutations.

Validity and E!ciency. CP performance is measured via two quantities: 1) va-
lidity (or coverage), i.e. the empirical error rate observed on a test sample, which
should be as close as possible to the significance level ε, and 2) e!ciency, i.e. the
size of the prediction regions, which should be small in order to have informative
(i.e., non-trivial) regions. CP-based prediction regions are automatically valid,
whereas the e"ciency depends on the chosen nonconformity function and on the
accuracy of the underlying model.

3.1 Conformal Prediction for Regression

In regression problems, we have a continuous target space Y ↔ Rn. The inductive
CP algorithm is divided into an o#ine phase, executed only once, and an online
phase, executed for every test point x↓. In the o#ine phase (steps 1–3 below), we
train the classifier f and construct the calibration distribution, i.e., the empirical
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approximation of the NCF distribution. In the online phase (steps 4–5), we derive
the prediction region for x↓ using the computed regressor and distribution.

1. Draw sample Z → of Z. Split Z → into training Zt and calibration set Zc.
2. Train regressor f using Zt. Use f to define an NCF ⇀.
3. Construct the empirical distribution F = 1

|Zc|+1

(∑
zi↗Zc

⇁ϑi + ⇁↘
)

of cali-
bration scores by computing, for each zi ↓ Zc, the NCF score βi = ⇀(zi).

4. Identify the critical value β(ε) = Q(1→ε;F) of the calibration distribution,
i.e. its empirical (1→ε)-quantile, or the ∞ε · (|Zc|+1)∈-th largest calibration
score.

5. Return the prediction region

↽ε(x↓) = f(x↓)± β(ε). (6)

Notice that such prediction intervals have the same width (β(ε)) for all inputs.
A natural NCF in regression is the norm of the di!erence between the real and
the predicted target value, i.e., ⇀(x) = ∋y → f(x)∋.

Predictive uncertainty. A CP-based prediction region provides a set of plausible
predictions with statistical guarantees, and as such, also captures the uncertainty
about the prediction. The size of the prediction region is determined by the
chosen significance level ε. Specifically, from Eq. (6) we can see that, for levels
ε1 ↖ ε2, the corresponding prediction regions are such that ↽ε1 ↔ ↽ε2 , as a
smaller ε yields a larger critical value β(ε).

3.2 Conformalized Quantile Regression

Let us now consider the stochastic setting with a probabilistic function mapping
an input x ↓ X into a distribution over the target space Y .

Quantile Regression. The aim of conditional Quantile Regression (QR) is to es-
timate a given quantile of such a distribution over Y conditional on an input
x ↓ X. Let F (y→|x = x→) := P(x,y)↔Z(y ≃ y→|x = x→) be the conditional dis-
tribution function of y given x. Then, the ε-th conditional quantile function is
defined as

qε := inf{y→ ↓ R | F (y→|x = x→) ↖ ε}. (7)

Given a significance level ε, we consider lower and upper quantiles w.r.t.
εlo = ε/2 and εhi = 1 → ε/2, respectively. We define the desired prediction
interval as PI(x) := [qεlo(x), qεhi(x)]. By construction, this interval satisfies

P(x,y)↔Z
(
y ↓ PI(x)

)
↖ 1→ ε. (8)

Since the prediction interval is conditional on the input, the length of the inter-
val is not fixed in general and changes at di!erent values of x. QR infers such
prediction interval from the data. In particular, estimating the quantiles can
be expressed as approximating the quantile function and thus it can be framed
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as an optimization problem. In a nutshell, the idea is to propose a parametric
function f(x; θ) as a candidate approximator for qε(x) and then optimize over
its parameters θ so that it closely resembles the quantile function. In this work,
we choose f(·, θ) to be a deep neural network optimized w.r.t. the pinball loss
function Lε(y, f(x, θ)) = εmax(y → f(x, θ), 0) + (1 → ε)max(f(x, θ) → y, 0). In
general, each quantile requires the training of a di!erent neural network. How-
ever, one could also train a single multi-output NN that learns to approximate
multiple quantile functions at the same time. The multi-output objective func-
tion is obtained by averaging over the respective losses.

Conformalized Quantile Regression. The goal of Conformalized Quantile Regres-
sion (CQR) is to adjust the QR prediction interval so that it is guaranteed to
contain the (1→ ε) mass of probability, i.e. to satisfy (8). As for CP, we divide
the dataset Z → in a training set Zt and a calibration set Zc. We train the QR
f(·; θ) over Zt and on Zc we compute the nonconformity scores as

Ei := max{q̂εlo(xi)→ yi, yi → q̂εhi(xi) | (xi, yi) ↓ Zc}. (9)

In our notation, q̂εlo(x) and q̂εhi(x) denote the two outputs of f(x; θ̂). The
conformalized prediction interval is thus defined as

CPI(x↓) = [q̂εlo(x↓)→ ▷, q̂εhi(x↓) + ▷ ],

where ▷ is the (1→ε)-quantile of the distribution F := 1
|Zc|+1

(∑
zi↗Zc

⇁Ei +⇁↘
)

of {Ei : zi ↓ Zc} △ {↘}, i.e., ▷ = Q(1→ ε;F).
In the following, we will abbreviate with PI a (non-calibrated) QR prediction

interval and with CPI a (calibrated) conformalized prediction interval.

Remark 1. This nonconformity function, and thus ▷ , can be negative and thus
the conformalized prediction interval can be tighter than the original prediction
interval. This means that the CPI can be more e"cient than the PI, where the
e"ciency is the average width of the prediction intervals over a test set. The CPI
has guaranteed coverage (the PI does not), meaning P(x,y)↔Z(y ↓ CPI(x)) ↖
1→ ε.

Remark 2. In principle, one could use traditional CP for regression (see Sec-
tion 3.1) to obtain valid prediction intervals for the stochastic case. The main
advantage of CQR is that it produces CPIs that are adaptive to heteroscedas-
ticity, i.e., they account for the fact that the variability in the output may be
a!ected by the value of the input. On the contrary, intervals produced by CP
for regression have fixed sizes and hence, do not account for heteroscedasticity.
Moreover, the PI of CP for regression would be relative to the conditional mean
of the STL robustness, instead of the conditional quantile range that we are
interested in.

Class-conditional guarantees. One might require prediction intervals that main-
tain similar error rates across various subsets of the data [1]. Suppose for instance
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that observations (x, y) can be categorized in a discrete and finite set of classes
{1, . . . , G}. We could ask for class-balanced guarantees of coverage:

P(x,y)↔Z(y ↓ CPI(x) | (x, y) ↓ g) ↖ 1→ ε (10)

for every class g ↓ {1, . . . , G}. This solution typically relies on splitting the
calibration set Zω

c
in G sub-calibration set and using only the group-specific

calibration scores to recalibrate the prediction interval. Within the QPM frame-
work, classes are determined by the Boolean satisfaction value, namely, the sign
of Rω. As a result, we require guarantees that are conditional on the sign. How-
ever, one could propose a di!erent partition of the robustness space and provide
guarantees w.r.t. such partition.

Input-conditional coverage. We may require prediction intervals that capture
the uncertainty of a specific input point. However, the guarantees obtained so
far are averaged over the data distribution, and the critical value ▷ used to
“conformalize” the predictions is constant and does not adapt to the predictive
uncertainty of a single data point. This kind of adaptivity is typically formalized
by the following conditional coverage [27] requirement:

P(x,y)↔Z(y ↓ CPI(x) | x = x↓) ↖ 1→ ε, for all x↓ ↓ X. (11)

That is, for every value of the input x, we seek to return a prediction interval
with 1→ε coverage over the outputs of x. However, distribution-free conditional
coverage is impossible to achieve with a finite sample [27,15], and hence, we
adopt a localization-based strategy to achieve approximate conditional validity,
as described below.

Quasi-input-conditional coverage. In conformal inference, each calibration point
contributes equally to the critical value ▷ , without considering its proximity
to the test input x↓. To achieve approximate conditional coverage, however,
it is essential to give more importance to points that are close to x↓ and less
importance to those further away. This intuition is at the core of the so-called
localized CP approach [13,14].

A localizer is a function L : X ⇔X ↗ [0, 1] such that, for any pair of inputs
xi, xj ↓ X, L(xi, xj) grows as the distance between xi and xj shrinks. For
example, one could define L(xi, xj) = exp(→∋xi → xj∋). In general, L must be
defined so that, for every xi ↓ X, L(xi, xi) = 1. We denote with L↓ = L(x↓, ·) :
X ↗ [0, 1] the localizer relative to test point x↓. The localizer is used to reweight
the calibration distribution so that calibration points close to x↓ have a higher
probability, resulting in the distribution F↓ := 1

|Zc|+1

(∑
zi↗Zc

wi

↓ ·⇁Ei +w↓ ·⇁↘
)
,

where wi

↓ := L↓(xi)
L↓(x↓)+

∑
zi↑Zc

L(xi)
and w↓ := L↓(x↓)

L↓(x↓)+
∑

zi↑Zc
L(xi)

.
However, this reweighting breaks the exchangeability assumption, as permu-

tations of calibration and test points no longer hold equal probability, meaning
that it may compromise marginal validity. To address this problem and uphold
finite sample coverage guarantees, localized CP provides a criterion to select the
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error level ε̃ used to derive the critical value ▷↓ = Q(1 → ε̃;F↓) and construct
the quasi-conditional prediction region at x↓.

For a calibration point zj = (xj , yj) ↓ Zc, let F↓
j
:= 1

|Zc|+1

(∑
zi↗Zc

wi

j
·⇁Ei +

w↓
j
· ⇁ϖ↓

)
be distribution of {Ei : zi ↓ Zc} △ {▷↓} reweighted around xj , and

let F0
j
:= 1

|Zc|+1

(∑
zi↗Zc

wi

j
· ⇁Ei + w↓

j
· ⇁0

)
be the reweighted distribution of

{Ei : zi ↓ Zc} △ {0}. Let ▷↓
j1 := Q

(
1 → ε̃;F↓

j

)
, and ▷↓

j2 := Q
(
1 → ε̃;F0

j

)
. The

criterion consists of selecting ε̃ as the highest value in the range [0,ε] such that
the following two conditions are met

1

|Zc|+ 1

(
∑

zi↗Zc

1{Ei≃ϖ
↓
i1}

)
↖ 1→ ε and

1

|Zc|+ 1

(
∑

zi↗Zc

1{Ei≃ϖ
↓
i2}

)
↖ 1→ ε,

(12)
or ▷↓ = ↘. The resulting prediction interval

CPIL(x↓) = [q̂εlo(x↓)→ ▷↓, q̂εhi(x↓) + ▷↓], (13)

can be proven to satisfy marginal validity [13] and provides the following quasi-
conditional guarantees

Pz↔ZL↓ (y ↓ CPIL(x) | x = x↓) ↖ 1→ ε, for all x↓,

where ZL↓ represents the distribution Z localized around x↓.
The search for ε̃ has to be carried out for each test input, potentially im-

pacting computational e"ciency due to its dependence on the calibration set
size. Specifically, the matrix of weights wi

j
needs to be computed once for every

test point, leading to a computational complexity that scales quadratically with
the number of calibration points, n := |Zc|. Additionally, verifying the condition
requires, for every candidate ε̃, the computation of n quantiles from sorted ar-
rays, which is linear in n. Therefore, the overall complexity for each test point is
O(n2 + n2 · k) where k is the number of candidate values for ε̃. An e"cient im-
plementation (see [14]) may reduce the cost to O(n · log n). However, this process
typically does not present a significant computational challenge for moderately
sized calibration sets, given that the condition is often satisfied long before all k
candidate values of ε̃ are explored.

4 Conformal Quantitative Predictive Monitoring

We present a method to solve Problem 1. For a given discrete-time stochastic
process S = {S(t,ϱ), t ↓ T} over state space S and a state s ′ S(k, ·) at time
k ↓ T , the stochastic evolution (bounded by horizon H) of the system starting
at s can be described by the conditional distribution P(s | s(k) = s), where
s = (s(k), . . . , s(k +H)) ↓ SH is the random trajectory of length H starting at
time tk, s(i) = S(i, ·) for any i ↓ T .

The quantitative STL semantics, either spatial or temporal, inherits the
stochasticity from the dynamics of the system. For an STL property ω, we denote
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Fig. 3: Diagram illustrating the generation of the dataset.

with Rω(s, k) the random variable denoting the STL robustness value relative
to ω of trajectories starting from s ↓ S at time k, i.e.,

Rω(s, k) ′ P(Rω(s, k) | s(k) = s).

Our conformal solution to the QPM aims at finding, for each state s ↓ S
of the system, a prediction region that covers a certain probability mass of the
STL robustness distribution Rω(s, k), see Problem 1. In simpler terms, we aim at
monitoring how safe the system is relative to the unknown and stochastic future
evolution from its current state s. In this way, one can intervene preemptively
on the system in order to prevent any failures. However, the distribution of
Rω(s, k) is impossible to compute exactly and in an e"cient manner. Thus, we
resort to Conformalized Quantile Regression (CQR), introduced in Section 3.2,
to compute a prediction interval that, for each state s, is guaranteed to cover a
desired level (1 → ε) of the probability mass for the distribution of robustness
values Rω(s, k). In short, our solution consists of four steps, detailed below:
dataset generation, QR training, NCF scores computation and inference. Note
that only the last step, which is by far the quickest, is performed online, the
others are performed o#ine and hence, do not a!ect runtime performance.

Dataset generation. In this step, we collect data for training the QR function and
constructing the calibration set. To do so, we perform Monte-Carlo simulations
of the process in order to obtain an empirical approximation of Rω(s, 0). In par-
ticular, we randomly sample N states s1, . . . , sN ′ S(·, ·). Then, for each state
si, we simulate M trajectories of length H, s1

i
, . . . , sM

i
where sj

i
is a realization of

P(s | s(k) = si), and compute the robustness value Rω(s
j

i
, 0) of each of these tra-

jectories. We note that {Rω(s
j

i
, 0)}M

j=1 is an empirical approximation of Rω(si, 0).
Fig. 3 shows an overview of the steps needed to generate the dataset. The dataset
is thus defined as Zω =

{(
si, Rω(s

j

i
, 0)

)
; i = 1, . . . , N ; j = 1, . . . ,M

}
.

The generation of the test set Zω

test
is very similar to that of Zω. The main

di!erence is in that the number of trajectories that we simulate from each state
s is much larger than M , i.e., Mtest ▽ M . This allows us to obtain a highly
accurate empirical approximation of the distribution of Rω(s), which we use as
the ground-truth baseline in our experimental evaluation.

QR training and residuals computation. We divide the dataset Zω into a training
set Zω

t
and a calibration set Zω

c
. We then use Zω

t
to train a QR that learns how

to map states s into three quantiles f(s; θ̂) = {q̂εlo(s), q̂0.5(s), q̂εhi(s)}, where
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εlo = ε/2 and εhi = 1 → ε/2. In order to better reconstruct the shape of the
target distribution, we also predict the median quantile, q0.5(s). We then apply
CQR, i.e. we compute the residuals of the QR over Zω

c
, as in (9), and find the

critical residual value ▷ .

Inference. For a test state s↓, this step involves predicting the relevant quantiles,
q̂εlo(s↓) and q̂εhi(s↓), using the QR predictor and correct the resulting interval
using the critical residual value ▷ . The calibrated interval returned at inference
time becomes

CPI(s↓) := [q̂εlo(s↓)→ ▷, q̂εhi(s↓) + ▷ ] ↔ R (14)

and provides the marginal coverage guarantees stated in Eq. 1.

4.1 Conditional validity

System failures are rare to observe, and so, the datasets used to train our pre-
dictive monitors are often unbalanced in that they contain more examples of
satisfying signals (positive samples) than violating signals (negative samples).
In this setting, marginal coverage does not guarantee adequate coverage of both
classes of signals. Suppose, for instance, that positive samples have frequency
1 → ε, whereas negative samples have frequency ε, and prediction intervals al-
ways cover positive samples but never cover negative ones. Then these prediction
intervals meet the 1 → ε nominal coverage in a marginal sense but fail to cover
negative instances. Sign-conditional coverage would imply that the prediction
intervals cover the output at least 1 → ε of the time in both classes. Similarly,
input-conditional coverage is a very strong property that states the probability
of the prediction interval needs to be greater than 1→ ε for each input, i.e., for
any subset of the data [1]. Localized conformal predictions o!er local coverage
guarantees.

1. Sign-conditional coverage. The goal here is to provide calibrated prediction
intervals where both positive and negative samples are ensured equal coverage.
To achieve this, the calibration set Zω

c
is partitioned into its positive Zω

(+)

c
and

negative Zω
(↔)

c
parts, i.e., in the subsets containing only calibration points with

positive and negative outputs, respectively. The prediction interval PI(s) induces
two separate calibration distributions of nonconformity scores from which we
extract the two (1→ε)-quantiles, ▷+ and ▷⇐ respectively. The prediction interval
PI(s) undergoes a sign-specific calibration obtaining CPI

+
(s) = CPI+(s)̸R+,

Fig. 4: Overview of the conformal quantitative predictive monitoring technique.



Conformal Quantitative Predictive Monitoring and Conditional Validity 15

where CPI+(s) is defined as in (14), guaranteed to cover 1 → ε of the positive
values of Rω(s):

P
(
Rω(s) ↓ CPI

+(
s(0)

)∣∣ Rω(s) ↖ 0
)
↖ 1→ ε (15)

and analogously CPI
⇐
(x) = CPI⇐(x) ̸ R⇐ is guaranteed to cover 1→ ε of the

negative values of Rω(s). The union CPI(s) := CPI
⇐
(s)△CPI

+
(s) of the two

recalibrated intervals is guaranteed to cover 1→ ε of all the values of Rω(s) for
s(0) = s:

P
(
Rω(s) ↓ CPI

(
s(0)

))
↖ 1→ ε. (16)

2. Localized Conformal Prediction. We build the localizer function L↓ = L(s↓)
(introduced in Sect. 3.2, Quasi-input-conditional coverage) as a k-nearest-
neighbors function, where L↓(s) = 1 if s is among the k nearest neighbors of
s↓ and 0 otherwise. Each sample in the calibration set is weighted according to
L↓, resulting in a state-specific calibration of the prediction interval CPIL(s↓)
as in (13) resulting in quasi-conditional guarantees

Ps↔SL↓

(
Rω(s) ↓ CPIL(s↓)

∣∣ s(0) = s↓
)
↖ 1→ ε, (17)

where SL↓ denotes the distribution S localized around s↓.

Remark 3. It is straightforward to combine the two approaches and obtain pre-
diction intervals that o!er both sign and input conditional guarantees.

Experimental evaluation. Due to space constraints we keep this paper method-
ological and refer the interested reader to [9] for all the details about the exper-
imental evaluation. Our implementation is available at https://github.com/
francescacairoli/Conformal_QPM.git.

5 Conclusions

We presented quantitative predictive monitoring (QPM), an e"cient and reliable
technique to monitor the evolution of a stochastic system at runtime. In partic-
ular, given a requirement expressed as an STL formula, QPM quantifies how ro-
bustly this requirement is satisfied both in space and in time by means of a range
of STL robustness values. This interval undergoes a principled recalibration that
guarantees a desired level of coverage, i.e. the interval covers the exact STL ro-
bustness values with a given confidence. By carefully designing the recalibration
strategy we can achieve either marginal or conditional guarantees of coverage.
The proposed technique avoids expensive Monte-Carlo simulations at runtime
by leveraging conformalized quantile regression. The resulting method has very
little overhead during runtime execution. The conformal approach reaches higher
accuracy and it also adjusts the width of the interval w.r.t. desired confidence
level, reducing the number of over-conservative predictions.

https://github.com/francescacairoli/Conformal_QPM.git
https://github.com/francescacairoli/Conformal_QPM.git
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In future work, we will investigate a possible dynamics-aware approach to
inference and how to exploit it in highly multi-modal scenarios. The latter should
aim at limiting the inference only to an estimate of the system manifold, i.e. the
region of the state space that is likely to be visited by the evolving stochastic
process.

References

1. Angelopoulos, A.N., Bates, S.: A gentle introduction to conformal prediction
and distribution-free uncertainty quantification. arXiv preprint arXiv:2107.07511
(2021)

2. Balasubramanian, V., Ho, S.S., Vovk, V.: Conformal prediction for reliable machine
learning: theory, adaptations and applications. Newnes (2014)

3. Bartocci, E., Deshmukh, J., Donzé, A., Fainekos, G., Maler, O., Ni"kovi#, D.,
Sankaranarayanan, S.: Specification-based monitoring of cyber-physical systems: a
survey on theory, tools and applications. In: Lectures on Runtime Verification, pp.
135–175. Springer (2018)

4. Bortolussi, L., Cairoli, F., Carbone, G., Pulcini, P.: Scalable stochastic parametric
verification with stochastic variational smoothed model checking. In: International
Conference on Runtime Verification. pp. 45–65. Springer (2023)

5. Bortolussi, L., Cairoli, F., Paoletti, N., Smolka, S.A., Stoller, S.D.: Neural predic-
tive monitoring. In: International Conference on Runtime Verification. pp. 129–147.
Springer (2019)

6. Bortolussi, L., Cairoli, F., Paoletti, N., Smolka, S.A., Stoller, S.D.: Neural predic-
tive monitoring and a comparison of frequentist and bayesian approaches. Interna-
tional Journal on Software Tools for Technology Transfer 23(4), 615–640 (2021)

7. Cairoli, F., Bortolussi, L., Paoletti, N.: Neural predictive monitoring under partial
observability. In: Runtime Verification: 21st International Conference, RV 2021,
Virtual Event, October 11–14, 2021, Proceedings 21. pp. 121–141. Springer (2021)

8. Cairoli, F., Bortolussi, L., Paoletti, N.: Learning-based approaches to predictive
monitoring with conformal statistical guarantees. In: International Conference on
Runtime Verification. pp. 461–487. Springer (2023)

9. Cairoli, F., Paoletti, N., Bortolussi, L.: Conformal quantitative predictive monitor-
ing of stl requirements for stochastic processes. In: Proceedings of the 26th ACM
International Conference on Hybrid Systems: Computation and Control. pp. 1–11
(2023)

10. Chen, H., Lin, S., Smolka, S.A., Paoletti, N.: An STL-based formulation of re-
silience in cyber-physical systems. In: International Conference on Formal Model-
ing and Analysis of Timed Systems. pp. 117–135. Springer (2022)

11. Chou, Y., Yoon, H., Sankaranarayanan, S.: Predictive runtime monitoring of vehi-
cle models using bayesian estimation and reachability analysis. In: 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). pp. 2111–2118
(2020)

12. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In: Proceedings of International Conference on Formal Modeling and Analysis of
Timed Systems. pp. 92–106. Springer, Klosterneuburg, Austria (Sep 2010). https:
//doi.org/10.1007/978-3-642-15297-9_9

13. Guan, L.: Conformal prediction with localization. arXiv preprint arXiv:1908.08558
(2019)

https://doi.org/10.1007/978-3-642-15297-9%5C_9
https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1007/978-3-642-15297-9%5C_9
https://doi.org/10.1007/978-3-642-15297-9_9


Conformal Quantitative Predictive Monitoring and Conditional Validity 17

14. Guan, L.: Localized conformal prediction: A generalized inference framework for
conformal prediction. Biometrika 110(1), 33–50 (2023)

15. Lei, J., Wasserman, L.: Distribution-free prediction bands for non-parametric re-
gression. Journal of the Royal Statistical Society Series B: Statistical Methodology
76(1), 71–96 (2014)

16. Lindemann, L., Qin, X., Deshmukh, J.V., Pappas, G.J.: Conformal prediction for
stl runtime verification. In: Proceedings of the ACM/IEEE 14th International Con-
ference on Cyber-Physical Systems (with CPS-IoT Week 2023). pp. 142–153 (2023)

17. Lindemann, L., Rodionova, A., Pappas, G.: Temporal robustness of stochastic sig-
nals. In: 25th ACM International Conference on Hybrid Systems: Computation
and Control. pp. 1–11 (2022)

18. Ma, M., Stankovic, J., Bartocci, E., Feng, L.: Predictive monitoring with logic-
calibrated uncertainty for cyber-physical systems. ACM Transactions on Embed-
ded Computing Systems (TECS) 20(5s), 1–25 (2021)

19. Majumdar, A., Pavone, M.: How should a robot assess risk? towards an axiomatic
theory of risk in robotics. In: Robotics Research, pp. 75–84. Springer (2020)

20. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems,
pp. 152–166. Springer (2004)

21. Papadopoulos, H.: Inductive conformal prediction: Theory and application to neu-
ral networks. In: Tools in artificial intelligence, chap. 18, pp. 315–330. InTech (2008)

22. Phan, D.T., Grosu, R., Jansen, N., Paoletti, N., Smolka, S.A., Stoller, S.D.: Neural
simplex architecture. In: NASA Formal Methods Symposium. pp. 97–114. Springer
(2020)

23. Qin, X., Deshmukh, J.V.: Predictive monitoring for signal temporal logic with
probabilistic guarantees. In: Proceedings of the 22nd ACM International Confer-
ence on Hybrid Systems: Computation and Control. pp. 266–267. ACM (2019)

24. Raman, V., Donzé, A., Maasoumy, M., Murray, R.M., Sangiovanni-Vincentelli, A.,
Seshia, S.A.: Model predictive control with signal temporal logic specifications. In:
Proceedings of the IEEE Conference on Decision and Control. pp. 81–87. IEEE,
Los Angeles, USA (Dec 2014). https://doi.org/10.1109/CDC.2014.7039363

25. Rodionova, A., Lindemann, L., Morari, M., Pappas, G.J.: Time-robust control for
stl specifications. In: 2021 60th IEEE Conference on Decision and Control (CDC).
pp. 572–579. IEEE (2021)

26. Romano, Y., Patterson, E., Candès, E.J.: Conformalized quantile regression. arXiv
preprint arXiv:1905.03222 (2019)

27. Vovk, V.: Conditional validity of inductive conformal predictors. In: Asian confer-
ence on machine learning. pp. 475–490. PMLR (2012)

28. Vovk, V., Gammerman, A., Shafer, G.: Algorithmic learning in a random world.
Springer Science & Business Media (2005)

29. Yel, E., Carpenter, T.J., Di Franco, C., Ivanov, R., Kantaros, Y., Lee, I., Weimer,
J., Bezzo, N.: Assured runtime monitoring and planning: Toward verification of
neural networks for safe autonomous operations. IEEE Robotics & Automation
Magazine 27(2), 102–116 (2020)

30. Younes, H.L., Kwiatkowska, M., Norman, G., Parker, D.: Numerical vs. statistical
probabilistic model checking. International Journal on Software Tools for Technol-
ogy Transfer 8(3), 216–228 (2006)

https://doi.org/10.1109/CDC.2014.7039363
https://doi.org/10.1109/CDC.2014.7039363

	Conformal Quantitative Predictive Monitoring and Conditional Validity

