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Abstract. The research of Large Language Models (LLMs) has signifi-
cant ground to cover in the context of formal verification. In this work,
we present a methodology that aims to increase the reliability of code
synthesized through the use of LLMs. Our approach capitalizes on the
intrinsic knowledge embedded within LLMs to achieve a more reliable
code synthesis. We specifically illustrate the possibility of teaching model
checking and runtime verification (RV) algorithms through our approach.
Our experiments demonstrate that LLMs grasp the concept of dynamic
programming, allowing them to synthesize code for these verification
tasks with minimal guidance.

1 Introduction

The emergence of large language models has raised significant expectations for
their ability to automate programming by simply specifying the desired code
requirements. Such capabilities have already been demonstrated with tools that
are based on powerful LLMs such as Copilot [15]. Performing code generation
tasks is also possible using generic instruction-based LLMs such as ChatGPT [13]
and Gemini [2]. The ability to instruct such a system to synthesize code is largely
influenced by the LLMs being trained on extensive corpora, including code from
various repositories that typically come with textual descriptions. One of the
main shortcomings of such a use is that it does not guarantee to synthesize a
correct program as a classical realization of specification methods [10,11]. In fact,
in general, the use of LLMs involves some inherent suspicion, e.g., due to the
hallucination phenomenon, where LLMs tend to provide “some” output even
when their knowledge is limited. Currently, the ability to perform nontrivial
deduction by LLMs is also limited. Despite these concerns, the use of LLMs
to produce code is widely prevailing. As a result, the use of LLM-based code
generation tools should be done with caution, and possibly hand-in-hand with
understanding the limitations and with appropriate testing of the code.

Our proposed methodology to synthesize code using LLMs is to identify a
programming pattern, in the case of this paper, that of dynamic programming [4],
which is simple enough to describe in simple terms and common enough to be
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used in code that is likely to be present in common repositories. This assumes
that the training phase of the LLM likely encompassed numerous instances of
dynamic programming-based code. Such identification allows for familiarizing
the LLM with the general schemes of programs that interest us. This is done by
incorporating the general scheme into a prompt. From there, with simple incre-
mental steps, we are capable of obtaining the synthesis of code for two formal
methods algorithms: model checking and runtime verification, both subscribing
to the dynamic programming scheme.

Breaking the program synthesis problem in this way allows confirming through
the use of the LLM that it has accurately detected the programming pattern by
reviewing its response. In fact, already in our preliminary experiments, we ob-
served that the LLM immediately identified the dynamic programming pattern,
even though we did not explicitly use this term when describing it as a program-
ming pattern. Such feedback is important before continuing with further steps
of the code construction.

More specifically, the dynamic programming pattern involves an algorithm
where components are structured within a graph, with each component possess-
ing values that impact and are affected by neighboring components. These values
are continuously updated in an iterative process until convergence is achieved.
One class of problems that are related to such a programming scheme are al-
gorithms that analyze execution of systems such as model checking, runtime
verification and statistical calculations. Reinforcement learning also aligns with
this pattern, especially via the Bellman equation calculation, though it is not
the focus of our discussion in this work.

After prompting the LLM with the general programming scheme, we can
use a second prompt that introduces the formal verification task. The expected
solution for the task is expected to rely on the dynamic programming pattern
mentioned before. A runtime verification monitor observes an execution of a
system and provides a verdict on whether it satisfies a given past time linear
temporal logic specification [9]. Each time a new event is observed, a summary
of the sequence of events seen so far is updated. In a sense, we can think about
this as a linear graph, where a new node is generated with each inspected event;
the new node is a successor of (i.e., has an incoming edge from) the previously
generated node. In fact, previous nodes in the graph are redundant and can be
removed as soon as the new node is constructed.

A model checking algorithm for the temporal logic CTL [5] can also be de-
scribed in terms of updating nodes in a directed graph of the global states con-
structed for a modeled system. States of the program can be represented using
graph nodes, with edges connecting states with their immediate successors. The
updates are performed in phases, where nodes are updated based on the values
of their neighbors. For example, we can check from which states some erroneous
situation, e.g., buffer overflow, is reachable. In an initial phase, the nodes in
which buffer overflow occurs are marked. Then, in each phase, we mark addi-
tional nodes that are incoming neighbors of nodes that were already marked in
previous phases. In this way, we mark increasingly longer paths from which such
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error is reachable. We terminate when a phase where no update occurs. Similar to
model checking, algorithms that analyze probabilistic systems [3] also subscribe
to a similar dynamic programming pattern, through Bellman equation [14].

In a preliminary evaluation, we utilized GPT-4 to apply our code synthesis
methodology to both runtime verification and model checking tasks, based on
the dynamic programming scheme.

2 Preliminaries

2.1 Computation Tree Logic

Computation Tree Logic (CTL) is a temporal logic that allows reasoning about
the executions of a system. CTL extends propositional logic with temporal op-
erators and quantifiers that express properties over computation trees, which
represent all possible execution paths of a system. It facilitates the specification
of complex system behaviors across multiple execution paths.

Syntax The syntax of CTL formulas is given by the following grammar:

pu=true|q| oA |oVlo =Yoo | AXp]|
EXp| AFp | EFp | AGp | EGy | AlpUd] | E[pU]

where ¢ belongs to a finite set A of Boolean Boolean propositions. The logic CTL
has the following informal meaning. The operators =, A, V, —, <> have the same
meaning as in propositional calculus. The state operators A and E denote “for
all paths” and “there exists a path” respectively, and the path operators include
X (next), F' (eventually), G (globally), and U (until). The operator X indicates
that a property must hold in the very next state. The F' operator expresses that
a condition will become true at some point in the future, while G ensures that
a property remains true in all future states along the path. The U operator is
used to denote that a property ¢ holds continuously until another property
holds. The syntax restricts the state and path operators to alternate.

Semantics The semantics of CTL is defined with respect to a Kripke structure

= (S, R, L), where S is a set of states, R C S x S is a transition relation, and
L is a labeling function mapping each state to a set of atomic propositions that
hold in that state. A Kripke structure can be represented as a directed graph. A
path in this structure is defined as an infinite sequence of states m = sgs1832.. .,
where each s; is a state in S and each pair (s;, s;+1) belongs to the transition
relation R.

A CTL formula ¢ is interpreted over a state s in a model M. The satisfaction
relation (M, s) = ¢ is defined inductively as follows:

— (M, s) | true is always true.

— (M, s) Fp iff p € L(s).

— (M,s) E~ iff it is not the case that (M, s) E ¢.

- (M,s)E o opw iff (M,s) = ¢op(M,s) =1, when op € {A,V,—, <},
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- (M,s) E AX¢ iff for all states ¢t such that (s,t) € R, we have (M, t) |E
o.

— (M,s) E EX¢ iff there exists a state ¢ such that (s,¢) € R and (M,t) =
é.

- (M,s) E AF¢ iff for all paths m = sps1s2 ... starting at s, there exists
i > 0 such that (M, s;) &= ¢.

- (M,s) E EF¢ iff there exists a path m = sgs1s2 ... starting at s and
an i > 0 such that (M, s;) = ¢.

— (M,s) E AG¢ iff for all paths m = sps182 ... starting at s, for all 4 > 0,
(Ma Si) ': (rb

— (M, s) E EGo iff there exists a path m = sgs182 ... starting at s, such
that for all i > 0, (M, s;) = ¢.

— (M, s) E AlpUvy] iff for all paths m = sps182 ... starting at s, there exists
i > 0 such that (M, s;) = v and for all j < i, (M, s;) =
®.

— (M,s) |E E[¢pU] iff there exists a path m = sps152 ... starting at s, where
there exists ¢ > 0 such that (M, s;) = ¢ and for all
J <t (Mvsj) ': .

2.2 Model Checking of Computation Tree Logic Formulas

In the context of formal verification, model checking [6,12] stands as a cen-
tral technique for verifying that a system model satisfies a given specification
expressed in temporal logic. CTL model checking involves verifying whether a
state in a model satisfies a CTL formula. The core idea is to recursively evaluate
the formula over the structure of the model, which is typically represented as a
Kripke structure.

The algorithm performs in phases. It marks nodes, representing states, with
the subformulas that hold in them (if a node is not marked by a subformula,
then it satisfies its negation). Initially, it marks the nodes according to the atomic
propositions in the CTL formula that are satisfied. Then, the nodes are marked
based on more complex subformulas. That is, if ¢ is a subformula of 1, then the
phases for ¢ must terminate before the phases for ¢ start. Updating nodes with
respect to a temporal subformula can take multiple phases, where in each phase,
the marking of a node can be affected by the marking of neighboring nodes in
previous phases. The switch from a marking node with ¢ to ¥ happens after
a phase where no further nodes are marked by @ occurs. For example, when
1 = @1 A e, after marking nodes with ¢ and @2, a new phase marks the nodes
already marked by both ¢; and s by ¢. When ¢y = EFy, after marking the
nodes with ¢, a sequence of phases mark nodes with . First, nodes marked by
@ are also marked by . Then, in each subsequent phase, each node that has
at least one successor marked in a previous phase by 1) is also marked by .
Thus, in each such phase, we mark by v nodes with a longer path to a node that
satisfies ¢ than in the previous phase. This terminates when no new marking by
1 occurs. The full algorithm can be found in [6].
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2.3 Propositional Past Time Linear Temporal Logic

Propositional past time linear temporal logic (PLTL) is a specification formalism
that allows expressing safety [1] properties of executions that include atomic
propositions. The restriction to past time allows interpreting the formulas on
finite traces.

Syntax The formulas of propositional past time linear temporal logic are defined
using the following grammar:

pu=true|q| @AYoV |lp = |oad] oSy el ©¢| By

where the symbol ¢ belongs to a finite set of Boolean propositions. The operators
-, A\, V, =, <> have the same meaning as in propositional calculus.

The temporal operators have the following informal meaning: the formula
(¢ S ), which reads as ¢ since 1, means that ¢ holds in some prefix of the
current trace, and for all prefixes between that one and the current trace, ¢
holds. The since operator is the past dual of the future time until modality. The
property ©¢ (previous-time ) means that ¢ is true in a trace that is obtained
from the current trace by omitting the last event. This is the past dual of the
future time next modality. We can also define the following additional derived
temporal operators: & ¢ = (true S ¢) (“past” or “once”), and Hp = - & —p
(“always in the past” or “historically”).

Semantics A past time LTL formula is interpreted over a trace (or an observa-
tion) of events of the form ejeqes . ... Each event e is interpreted (labeled) with
a finite set of propositions L(e) C A. This labeling is obtained when the event
is observed. Let ¢; denote the prefix trace ejes . ..e;. The semantics of the logic
is as follows:

— t; = true is always true.

—tliFq iff g € L(e;).

-t = iff it is not the case that t; = ¢.

- tl':((popw) lfftl':@Op tz):ﬂ% when OpE{/\,\/,—),H}.
-t Eop iff i >1andt;,_1 E .

—tiEo e iff t; = ¢ for some 1 < j <.

— t; EHp iff t; = foralll <j<i.

—tiE=(pSY) ifft; = forsome 1< j<iandt = forall j <k <i.

2.4 Runtime Verification of Past Time Linear Temporal Logic

Runtime verification is a technique used in software engineering to check that a
system behaves correctly during its execution by monitoring and analyzing the
events in its traces against specified requirements or properties. This process
involves observing system executions in real-time or from recorded traces and
using formal specifications to detect and possibly react to violations of expected
behavior.
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In [9], a runtime verification algorithm that takes a propositional past time
linear temporal logic (LTL) formula and generates an efficient dynamic program-
ming algorithm was proposed. The generated algorithm tests if a finite trace of
events, provided as input, satisfies the formula and operates in linear time. The
algorithm is based on calculating a summary for the current monitored trace.
The summary is used, instead of storing and consulting the entire trace for
providing verdicts, and is updated when new monitored events are reported. It
consists of two vectors of bits. One vector, pre, keeps the Boolean (truth) value
for each subformula, based on the trace observed so far except the last observed
event. The other vector, now, keeps the Boolean value for each subformula based
on that trace including the last event. Given a new event e which extends the
monitored trace, the vector now is calculated based on the vector pre and the new
event e. Every bit in now is associated with a different operator in the formula,
each having a unique update pattern.

In RV, as in CTL, the processing of a formula commences after its subformu-
las are processed. Thus, for a 1) = (2 Ag2), we set now(1)) to now (1) Anow(ps).
For ¢ = B, we set now(1)) = now(p)Vpre(Hyp). The full algorithm can be found
in [9].

3 Owur Methodology

Both model checking for CTL formulas and runtime verification for propositional
past time LTL formulas can be handled with methods that share the same al-
gorithm scheme. Our goal is to teach the LLM to produce a correct code for
these two problems while providing only the minimal problem-specific guidance
required to facilitate a solution.

Our methodology is a prompt-based technique. The first prompt describes
the algorithm scheme, in this case dynamic programming, that is fundamental to
both the runtime verification and model checking algorithms. Then, depending
on the problem we wish to solve, we proceed with a second, succinct prompt
that includes the formal specification of the verification problem as well as an
instruction to follow the algorithm scheme to produce code that solves the desired
problem.

We describe now the course of the algorithm scheme and its related data
structures. The algorithm scheme outlines a general pattern for data propaga-
tion within a directed graph using designated update functions. In the two ap-
plications under focus, the nodes of such a graph represent states of the checked
system, and an edge connects a state with its immediate successor. For every
node in the directed graph, we hold a list of data items, where each data item
has the following properties:

— Data type - may be any data type that is supported by programming lan-
guages.

— Current value - the value that is currently stored for the data item of a
certain node.

— Update function - determines the update rule of the data item value.
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An update function for a data item can modify its value based on the previous
value, the values of other data items in the same node, or the values of data items
from successor nodes in the graph. First, the data items of each node have their
initial values, based on their update function. We then progress through each
data item within every node, updating their values based on their associated
update functions. This iteration continues repeatedly until we reach a point
where all values remain unchanged. While convergence to final values for the
data items is not guaranteed in the general case, for the two specific verification
problems discussed, convergence is eventually achieved. Note that the specific
programming examples in this study (Model Checking and Runtime Verification)
are limited to data items with Boolean data types. However, other algorithms,
such as those used in reinforcement learning, might employ different data types,
such as numeric. The algorithm scheme prompt is presented in Listing 1.

Consider the following scheme for a data propagation
algorithm in a directed graph. The algorithm works on the
nodes of a directed graph. The graph has an initial state.
Every node in the graph includes some data items. Every item
has the following properties: update function, data type,

and value.

An update function of a data item can update its value based
on values of data items of the same node, or successor nodes.

The algorithm works as follows:

each data item of each node has an initial value. Then, we
iterate over all the nodes, and all the data items inside
the nodes, and update their values according to their update
values. We then iterate over all the data items again and
again, until the values of all the data items of all the
nodes are not changed.

This is only an algorithm scheme, in the next step you will
be provided with a use case that can be solved using this
scheme.

Listing 1: The prompt that was used to describe the algorithm scheme.

3.1 CTL Model Checking Algorithm Synthesis

Given the algorithm scheme, we aim to synthesize a CTL model checking algo-
rithm that verifies a Kripke structure with atomic propositions attached to its
nodes, with a minimum of additional information provided regarding the im-
plementation details of such an algorithm. We devised a succinct prompt that
consists of the following inputs:
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The task description - the LLM is instructed to use the scheme outlined in
the previous prompt to generate a model checking algorithm for CTL formu-
las. Additionally, a description of the input requirements and the expected
output is provided.

The names of the temporal operators that are used in the relevant CTL
formula.

The CTL formula that represents the specification to be checked.

The relation to the data propagation scheme - an explicit instruction to
employ the scheme in creating the algorithm, accompanied by a subsequent
request to represent subformulas of the CTL formula as data points in each
node of the Kripke structure.

An example of such a prompt can be found on Listing 2. The algorithm de-
veloped from this prompt closely resembles the one described in [8]. We observed
that, even in the absence of direct guidance, the LLM was able to grasp the data
propagation scheme and utilized its intrinsic knowledge of formal verification
and temporal logics to deduce the correct update functions for each of the CTL
operators.

Based on the algorithm scheme provided, please generate a
model checking algorithm for CTL (Computation tree logic)
formulas. We want to model-check a directed graph, where
inside every node, every data point corresponds to a
subformula. consider only the logical operators not, and,
or, implication and double implication, and the temporal
operator AX (all-next).

Assume that the specification to be checked is "AX(ql) &&
AX(q2)" where ql and g2 are boolean proposition. Please
describe the components of the boolean propagation algorithm
in this case. Then, generate a Python code for the
algorithm, where the main function (llm_model_check) gets a
directed graph as its only input. The code’s output should
be a set of graph vertices that satisfy the specification.

Listing 2: An example of a short prompt that generates code that verifies a
Kripke structure with respect to a CTL specification.

We provide here a code generation example of a model checking algorithm
written in Python for the relatively simple specification AX (go) A AX (¢1), based
on our methodology. In Listing 3, we show a part of the LLM response, where
the different components of the model checking algorithm are described, with
correspondence to the general algorithm scheme. We focus on the description
of the update functions and the iterative update process. The response shows
that the LLM understands how to apply the algorithm scheme for the structure
of the temporal specification. Moreover, it successfully recognizes the recursive
update function of the temporal operator AX.
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Update Functions
Each data item needs an update function corresponding to its
logical or temporal nature:

q0 and ql: These are basic Boolean propositions and do not
require updates unless they are dynamically changing with
each iteration, which is typically not the case in static
model checking.

AX(q0) and AX(ql): These require temporal evaluation. The
value of AX(p), where p is a proposition, at a given node is
true if for all immediate successor nodes, the proposition p
is true. The update function here will look at all direct
successors of the node and check the truth of 90 and qi
respectively in those successors.

AX(q0) && AX(ql): This data item updates based on the values
of AX(qO0) and AX(ql) at the node. It evaluates to true if
both AX(q0) and AX(ql) are true at the node.

Iterative Update Process

Propagation: Starting with the initial values for qO0 and qil,
the algorithm iterates through all nodes to update AX(q0)
and AX(ql) based on the values of q0 and gl in all successor
nodes.

Combination: After updating all nodes based on their
successors for AX(qO0) and AX(ql), the values for AX(qO0) &&
AX(ql) are updated.

Convergence Check: The process repeats (if necessary) until
there are no changes in the values across all nodes for any
data point.

Listing 3: The outline of the update functions and the iterative update process
of a potential model checking algorithm for the formula AX (go) A AX(q1), as
described by the LLM. This desription is part of the LLM response to the prompt
detailed in Listing 2.

The generated code of the model checking algorithm is depicted in Listing 4.
The method model _check gets a Kripke structure as an argument, and outputs
all the graph vertices that satisfy the specification. The code seems to precisely
follow the guidelines of our algorithm scheme; a different update function is
defined for each data item, and all the graph vertices and their data items are
iterated until convergence. In the next section, we tested our approach against
some non-trivial specifications.
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class Kripke:
def __init__(self, R, L):
# List of tuples (source, destination) representing directed edges

self .R = R
# Dictionary mapping nodes to sets of propositions (labels)
self .L = L

def model_check(K):
# Extracting nodes from edges and labels
nodes = set([u for (u, v) in K.R] + [v for (u, v) in K.R] +
list(K.L.keys ()))

# Create dictionaries to store AX(qO0), AX(ql), and
# AX(qO0) && AX(q1l) values

ax_q0 = {node: True for node in nodes}
ax_ql = {node: True for node in nodes}
result = {node: False for node in nodes}

# Initialize AX values based on successor nodes
for node in nodes:
# Check all successors for qO0 and ql according to AX definition
successors = [v for (u, v) in K.R if == node]
# If there are no successors, AX(q) is trivially False
if not successors:
ax_qO[node] = False
ax_qllnode] = False
else:
ax_qO[node] = all(’q0’ in K.L.get(succ, set()) for succ in
successors)
ax_qllnode]l = all(’ql’ in K.L.get(succ, set()) for succ in
successors)

# Main iterative loop to ensure convergence
changed = True
while changed:

changed = False

for node in nodes:

new_ax_q0 = all(’q0’ in K.L.get(succ, set()) for succ in
successors)

new_ax_ql = all(’ql’ in K.L.get(succ, set()) for succ in
successors)

new_result = new_ax_qO and new_ax_ql

# Check if any value has changed
if new_ax_q0 != ax_qO[node] or new_ax_ql !'= ax_ql[nodel] or
new_result != result[nodel:
ax_qO0[node] = new_ax_q0
ax_ql[node] = new_ax_ql
result [node] = new_result
changed = True

# Collect nodes that satisfy the specification
satisfying_nodes = {node for node, value in result.items() if valuel}
return satisfying_nodes

Listing 4: The code of the model checking algorithm for the formula AX (qp) A
AX(q1), as produced by the LLM.

3.2 Runtime Verification Monitor Synthesis

In [7], we proposed an LLM-based approach specifically for generating runtime
verification monitors from natural language specifications. This approach con-
sists of four stages, where the first one focuses on teaching an LLM to translate
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a given natural language specification to a past time LTL formula. Subsequent
stages involve generating an RV monitor from the formula and verifying its cor-
rectness by submitting additional queries to the LLM.

In this work, we do not consider the translation stage from natural language
but focus on synthesizing monitors from past time LTL formulas. The goal here
is to leverage the information about the algorithm scheme and the knowledge the
LLM possesses regarding runtime verification to generate a runtime verification
monitor for a given specification. Relying on the algorithm scheme described in
Listing 1 may allow a more succinct and easier description in the subsequent
prompt.

We crafted a concise prompt that included the specification, the names of the
operators used in the formula, and a general description of the algorithm purpose
and setting, specifically that the object being verified is a trace of events. This
prompt was designed to follow the algorithm scheme prompt from Listing 1. It
was also necessary for the prompt to imply that the abstract syntax tree of the
formula aligns with the graph outlined in the algorithm scheme. Without such
an implication, the LLM had difficulty figuring out how to efficiently use the
scheme to verify the trace against the specification. The pre and now boolean
values of each syntax tree node are considered as two data items with Boolean
data types. An instance of the presented prompt can be found on Listing 5.

Based on this scheme, create a runtime verification
algorithm for the following past time LTL formula: "H(ql <->
P(P q1))". The "H" temporal operator means
"historically"/"always in the past", and "P" means "in the
last step"/"in the previous timestep".

The purpose of runtime verification is to get a trace of
events, where each event is an assignment for the boolean
variables, and output after every event if the trace
satisfies the formula so far (the verdict). In your
solution, the graph should be a tree that corresponds to the
syntax tree structure of the formula. Every operator has a
different update function. Clearly state the update function
for each operator. Remember that each update function may
rely on the previous value of the node to calculate its new
value.

Listing 5: An example of a short prompt that generates a runtime verification
prompt for a given past time LTL formula.

During our experiments, we observed that the LLM under test effectively
extracted the abstract syntax tree from the tested formulas. Following the clas-
sical dynamic programming algorithm for runtime verification suggested in [9],
every past-time LTL operator has its own update rule. In our case, the update
functions deduced for each operator were identical to the ones proposed in the
paper. This highlights the high proficiency of the tested LLM in interpreting past
time LTL operators and its ability to integrate them into an existing algorithmic
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pattern. This success is notably surprising, since past time LTL is not widely
discussed in the literature. It was also interesting to see that the LLM identified
that traversing the syntax tree nodes from bottom to top ensures that a single
node traversal is sufficient for the boolean values to converge. Our experiments
show that the algorithm developed from the prompt described in Listing 5 suc-
cessfully verified traces against quite complex past time LTL formulas, with 20
or more syntax tree nodes.

We provide here a code generation example of an LLM-synthesized runtime
verification monitor written in Python for the specification B(¢; < ©(©¢1)),
based on our methodology. In its output, the LLM first describes the past time
LTL formula breakdown to a syntax tree and then determines the correct update
function for every node. Subsequently, the monitor code is generated, as can
be seen in Listing 6. The method analyze_trace gets a trace of events as an
argument, and outputs a list of boolean verdicts, one for each observed event. As
previously mentioned, the LLM realized that updating the values of the syntax
tree nodes from bottom to top eliminates the need of executing the update
statements for each node repeatedly. Therefore, the update statements for each
syntax node are executed just once per event. The next section presents various
experiments of this method applied to different specifications and traces.

def analyze_trace(trace):
# Initialize the historical values
historical_ql = True
previous_ql = False
previous_previous_ql = False

verdicts = []

for event in trace:
current_ql = event[’ql’]

# Update the ’P’ nodes
current _P_ql = previous_ql
current _PP_ql = previous_previous_ql

# Update the ’<->’ node
current _biconditional = (current_ql == current_PP_ql)

# Update the ’H’ node
current _historical = historical_ql and current_biconditional

# Collect verdict for this event
verdicts.append(current_historical)

# Update historical values for next iteration
historical_ql = current_historical
previous_previous_ql = current_P_q1l
previous_ql = current_ql

return verdicts

Listing 6: An example of a runtime verification monitor code for the specification
H(q, <> P(Pq1)), as produced by the LLM.
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4 Experimental Evaluation

We evaluated our approach for synthesizing both model checking programs and
runtime verification monitors on specifications with varying sizes. The LLM un-
der test was GPT-4, which was instructed to generate Python programs.

4.1 CTL Model Checking Algorithms Synthesis

We utilized our approach to generate model checking algorithms for six different
CTL specifications of varying syntax tree sizes, where the smallest had five nodes
and the largest had thirteen nodes. Each generated model checking program was
compared to an existing Python-based model checking tool!. The comparison
was made by testing their consistency across 1000 randomly generated Kripke
structures with 10 to 30 nodes.

The model checking programs of five out of six of the tested specifications
were completely consistent with the existing Python tool, where the model
checker of the largest specification was consistent with only 401 out of 1000 of the
tested Kripke structures. Again, GPT-4 accurately deduced the update functions
for all the temporal operators. We attempted to generate some model checking
programs to the same specifications without the algorithm scheme prompt, but
could not get the recursive update functions for the different operators as ob-
tained with the scheme.

4.2 Runtime Verification Monitors Synthesis

Initial Experiments We attempted to synthesize runtime verification moni-
tors for nine propositional past time LTL specifications with varying syntax tree
sizes. They were divided into three different groups based on their sizes, with
three specifications for each group. Every generated monitor was manually in-
spected to ensure it produced the correct verdict. Additionally, every monitor
was benchmarked against a real runtime verification tool to verify the consistency
of the output verdicts across 1000 different traces, each containing 30 events.

Size (#nodes) Correct Monitors Correct Verdict Rate

4-6 3/3 100%
9-13 3/3 100%
16-20 2/3 94.3%

Table 1: Runtime verification monitor generation experiments. Each row repre-
sents a group of tested specifications of a different size.

Table 1 shows that our approach managed to generate correct monitors for
eight out of nine of the tested specifications. It failed to generate a correct

! https://github.com/albertocasagrande/pyModelChecking
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monitor for one specification from the last size group, with a syntax tree of
20 nodes. In this specification, only 82.9% of the inspected events yielded the
correct verdict. We noticed that using our scheme, GPT-4 was able to deduce the
update functions for all the temporal operators accurately. However, when the
specification contained the since operator, we sometimes needed to emphasize
that an update policy may use the previous values of its own node as part
of the update function, otherwise a correct update rule for the since operator
could not be inferred. Hence, for these specifications, we added the following
sentence to the corresponding prompt: “remember that each update function
may recursively rely on the previous value of the node itself and the current
values of the operands of the node”. In addition, we attempted to create the
same monitors without providing the pattern provided in Listing 1, and only by
using the concise, domain-specific prompt that is described in Section 3.2 but
were not able to reproduce the results.

Comparison Against Other LLM-Based Monitor Generation Method
In [7], we proposed an LLM-based approach specifically for generating runtime
verification monitors from natural language specifications. To evaluate the ap-
proach, we devised 15 examples of natural language specifications that should
finally be transformed into runtime verification monitors. The approach in [7]
consists of four stages, where the first one translates the natural language specifi-
cation to a past time LTL formula, and the rest of them generate an RV monitor
out of the formula.

We evaluated both our current approach and the previous approach on the
past-time LTL translations of the 15 natural language specification examples.
Each past time LTL specification consisted of five to nine syntax tree nodes.
When running the previous approach, we discarded the first stage and started
from the second stage that gets past time LTL formulas as inputs. Again, every
generated monitor of the two approaches was benchmarked against a real runtime
verification tool to verify the consistency of the output verdicts across 1000
different traces, each containing 30 events.

Although the approach outlined in [7](excluding its first stage) employs seven
different prompts compared to two prompts in the current work and features an
overall prompt length about 3.7 times greater than ours, each method succeeded
in generating correct monitors for 14 out of 15 examples. Our current approach
not only shows competitive performance but also uses a generic programming
pattern adaptable for code generation across various domains, unlike the prior
approach that was specifically designed for RV monitors.

5 Conclusion

In this work, we present a methodology for synthesizing code through the use
of LLMs. While LLMs are already widely used for code generation tasks, our
approach focuses on achieving more reliable code with relatively shorter prompts.
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The main principle in this work is to determine a programming pattern or
scheme of our target code that is commonly used as a basis of algorithms and
subsequently programs. In this paper, the scheme is that of dynamic program-
ming [4]. We outline the programming scheme and the data structures employed
to the LLM. As the LLM is likely to have been trained with many examples of
this scheme, some verbal feedback is demanded, which increases our trust that
the scheme is identified and will be correctly used. Following this, we introduce
the specific algorithm for which we aim to generate code, detailing its main data
structures. Lastly, we connect these data structures back to the scheme identified
earlier and direct the LLM to produce the appropriate code for the algorithm.

We demonstrate the effectiveness of our approach by generating codes for
both model checking and runtime verification algorithms that utilize the com-
mon underlying dynamic programming scheme. Our experiments show positive
outcome, but it appears that existing LLMs find it challenging to process longer
specifications for both algorithms. To evaluate our methodology, we attempted in
further experiments to generate code for both algorithms using concise, domain-
specific prompts, which omitted the description of the dynamic programming
scheme. These experiments did not reproduce the results.

We believe that LLM-based programming methodologies such as the one
presented here can be used to better harness LLM technologies for reliable code
synthesis. Future research in this direction can explore the application of our
approach with different programming patterns to generate complex code across
various domains.
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