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Abstract. Large Language Model (LLM) Artificial Intelligence (AI)
systems have generated significant enthusiasm in the computer science
research community for their potential in various computer language
processing tasks, such as source code generation and source-to-source
translation. We are particularly interested in using LLMs for automated
theorem proving, specifically for proof repair. To this end, we intro-
duce CoqDog Copilot, which leverages the neuro-symbolic interplay be-
tween generative AI and the Coq theorem prover to form a productive
"generate-and-test" loop, incrementally improving proofs based on fail-
ure information and human hints until valid proofs are achieved. Our
research introduces innovative solutions to critical challenges in develop-
ing CoqDog Copilot, including addressing context limitations, enhancing
the soundness of recommendation systems, defining e!ective metrics for
measuring proof repair progress, and designing a statistically robust eval-
uation system for conversational quality assessment. We present a com-
prehensive evaluation of CoqDog Copilot’s performance in proof repair
across multiple samples from the Copland Coq proofbase, which consists
of a total of 21,000 lines of Coq code. We have attained in excess of
60% accuracy for proof generation using GPT-4 in one ’shot’, with ap-
proximately 30% more lemmas proved given one additional user prompt
(yielding 90% correctness overall). With three ’shots’, the overall proof
correctness rate increases to 97%. We can generate Coq proofs with up
to 50 proof steps using this technique. Our LLM-generated proofbase
currently consists of over 1,400 lines of Copland Coq source.

1 Introduction

Large Language Model (LLM) Artificial Intelligence (AI) systems have ignited
great excitement in the computer science research community for their potential
to perform a number of computer language processing tasks, including source
code generation from natural language descriptions, source-to-source translation,



and the like. LLMs do have a significant downside, however: they are apt to pro-
duce “hallucinations”, textual output that appears convincing at first glance, but
is in fact, nonsensical. This is especially problematic when it comes to software
synthesis for high-assurance applications. Recent studies on the use of GitHub
Copilot [15], an LLM-based coding assistant, show that 40% of the generated
code contained serious vulnerabilities. In a recent comparative study, Perry et
al. report that developers who made use of OpenAI’s Codex LLM-based coding
assistant on security-related coding assignments “wrote significantly less secure
code than those without access.” [18]

We are interested in the use of LLMs for automated theorem proving, par-
ticularly proof repair. Proof repair is a great use case for LLMs, because the
neuro-symbolic interplay between the generative AI and the automated theorem
prover form a productive “generate-and-test” loop, with the LLM incrementally
modifying its proof attempts based on proof failure information from the theo-
rem prover, as well as hints from the human user, until a valid proof is achieved.
The automated theorem prover thus acts a foolproof “hallucination detector”; the
proof will fail if any of the LLM-generated steps are nonsense. We have focused
on a particular use case: the Copland Semantic Remote Attestation proofbase
developed by researchers at the University of Kansas. This paper summarizes
the results of our use of LLMs for proof repair for the Copland proofbase. In
pursuit of this goal, in this paper we introduce CoqDog Copilot, (see Figure 1
and Figure 2). We summarize our contributions as follows:

1.1 Contributions of this Paper

1. Our research addresses critical challenges in developing a generative AI as-
sistant for proof synthesis and repair, including:
– Introducing CoqDog Copilot, a web application for proof synthesis and

repair using the Coq theorem prover (see Figure 1).
– Proposing an innovative approach to address the copilot’s context limi-

tation (Figure 3).
– Developing a sound recommendation system supported by a ranking

mechanism to prevent logically unsound recommendations.
– Establishing e!ective metrics for measuring proof repair progress.
– Designing a statistically robust evaluation system for assessing conver-

sational quality (Figure 5).
2. We present a comprehensive evaluation of CoqDog Copilot’s performance in

proof repair across multiple samples, as shown in Figure 4 from the Copland
Coq proofbase, which consists of a total of 21,000 lines of Coq code.

1.2 Paper Organization

In Sections 1 to 4, we provide a brief introduction, outline our motivations, and
o!er background information on Copland attestation protocols and their devel-
opment challenges. In Section 5, we present our proof repair system using LLMs.
Section 6 explores the contextual prompt constraints problem and our approach



to overcome it. Section 7 discusses our Conversation Quality Assessment System
(CQAS) for evaluating proof repair quality. Finally, in Section 8, we summarize
our experimental evaluations, key results, highlight current limitations, and sug-
gest future work. Related work and main conclusions are discussed in Section 9
and Section 10, respectively. Finally, Appendix A provides statistical details of
our CQAS system’s experimental evaluation on the Copland proofbase.

Remark 1. We implemented our CoqDog copilot as a web application, under
open source terms. Contact the second author for more details.

2 Copland: Semantic Remote Attestation

Copland [20,21] is a domain-specific language designed for describing, analyzing
and executing attestation protocols. Its formal semantics, specified using the Coq
theorem prover, defines evaluation, sequencing, and dispatch of measurements
resulting in evidence describing a system’s state. That evidence is in turn ap-
praised to determine if and how an external system will interact with it. Copland
implementation code is automatically generated from the Coq specification via
verified synthesis techniques, providing a high-assurance link between specifica-
tion and realization. Copland protocols may be provisioned early in the devel-
opment of the system, evolve as the system develops, and continue to function
once the system is deployed, re-developed, re-deployed, etc. Thus the Copland
protocol proofs for these “Lifecycle Attestation” use cases need to evolve as the
system design changes. This has led us to perform experiments to determine
whether LLM technology could be used to perform automated proof repair for
evolving formal attestation protocol specifications.

3 High-Assurance Model-Based System Development

Successful large model-based system developments invariably take the form of
composable, accurate sub-models that developers can readily combine accord-
ing to well-defined assume/guarantee contracts (for a practical example of this
approach, see [4]). By accurate, we mean that a model accurately reflects the
as-built system and that the model is actively maintained during initial system
development, as well as subsequent modification; a model that maintains ac-
curacy in the face of modification is called resilient. Engineers will continue to
develop and maintain such a model if it is synthesizable; that is, it automati-
cally produces (at least) a skeletal implementation that can be integrated with
detailed functional components as they are developed (see [2] for an example of
this type of high-level system integration tool). This automation of system inte-
gration avoids time-consuming errors associated with manual “big bang” system
integration e!orts under time pressure. Synthesizable models also allow for auto-
mated generation of simulations that execute on a host-based operating system
or virtual machine.



Engineers are motivated to develop and maintain a model that is observ-
able/analyzable, i.e., one that provides useful, accurate evidence of whether the
developing model satisfies its key requirements-derived properties, both at de-
velopment time and at run time. Additionally, it should support compositional
analyses to support activities such as schedulability analysis, information flow
analysis, cyber vulnerability analysis, as well as detailed change impact analysis
when design modifications are contemplated.

Finally, an accreditable/certifiable model is one that directly supports the ac-
creditation/certification process through formal analysis, direct integration with
assurance cases and evidence generation, such as the Resolute assurance case
tool reported on in [1].

4 Lifecycle Remote Attestation

As a model of transforming system observation we propose extending the con-
cepts of semantic remote attestation to the system design process; in e!ect,
providing “birth to death” attestation. Recall that semantic remote attestation
is a process of gathering evidence in support of a trust decision. Measurements
gather evidence, attestation bundles evidence with meta-evidence, and appraisal
assesses evidence to determine trust.

Typically, a remote attestation system is a one-o! system focused on an im-
plemented, operational system. Measurements make observations during system
boot and execution. They do not extend to system design, provenance, certifica-
tion or postmortem and are rarely associated with specific system requirements.
Furthermore, attestation systems do not evolve with their associated systems.

Our vision is to expand the concepts of measurement and attestation, making
attestation first-class in the system-level design process. Attestation will apply
from initial system specification and evolve with the design through certifica-
tion, deployment, and system update cycles. As the system evolves, so will our
mechanisms for observation while maintaining a semantic connection to system
requirements. Specifically, we will: (i) define static measurement; (ii) integrate
static measurement into attestation semantics and interpretation; (iii) transform
attestation using static measurement into attestation using dynamic measure-
ment; while (iv) providing trustworthy synthesis of dynamic remote attestation
and measurement components using formal methods techniques.

5 Lifecycle Attestation Proof Repair using Large

Language Models

Because Lifecycle Attestation applies to a system under development, the at-
tendant measurement and attestation protocols, specified in Coq (from which
the source code is automatically generated), will likely need to evolve as the
system design changes. Further, since proof development for Copland protocols
requires significant time and expertise, we needed to find a way to reduce the



time required to re-prove Copland in a slightly changed environment, and to
allow non-Copland experts to oversee the proofs, with machine assistance. This
problem, called “proof repair”, is becoming increasingly important as proofbases
grow and evolve.

We hypothesized that we could utilize Large Language Model (LLM) Artifi-
cial Intelligence technology to develop an “AI Assistant” for Coq, which we have
named CoqDog (the ‘Dog’ metaphor suggests a helpful, energetic entity that
aims to please). CoqDog is thus similar to many LLM-based “co-pilots” in areas
such as software development.

We quickly noted that we could evaluate CoqDog by feeding it lemma con-
jectures for Copland, but without the proof steps that Coq proof developers
compose to prove that those conjectures are mathematically correct, and ask
the LLM AI to come up with its own sequences of proof steps. We could then
submit these candidate proofs to the Coq theorem prover, and see whether the
AI-generated proof steps actually resulted in a proof. This, as it turns out, is a
wonderful use case for LLMs, because LLMs have developed a (well-deserved)
reputation for producing “hallucinations”, textual output that appears convinc-
ing at first glance, but is in fact, nonsensical. (NB: This is a real concern, for
example, when attempting to use LLMs to compose software, because the gen-
erated code may well compile, yet still be wildly incorrect, with no way to tell,
absent detailed testing and line-by-line code inspections, whether the generated
code ‘works’, whether it may have introduced a malicious backdoor, etc.) By
submitting the LLMs candidate proofs to the Coq theorem prover, we are able
to invoke a foolproof “hallucination detector”, as the proof will fail if any of the
AI-generated steps are nonsense.

The Collins team that developed CoqDog and performed the evaluation on
the Copland proofbase were experienced users of interactive theorem provers,
but had little experience with LLMs, the Coq theorem prover, or the details
of Copland. At first, the team thought that we would need to develop a sig-
nificant training set in order to yield sensible results from the LLM. But we
were pleasantly surprised, especially using OpenAI GPT-4 [12]. GPT-4 began to
produce valid proofs on small examples almost immediately, with no training.
Surprisingly, it recognized Coq input specifications, and we eventually stopped
prompting it to produce Coq proofs. Before long, as the team learned the basics
of prompting the system, GPT-4 was producing a high percentage of correct
Coq proof sequences, and succeeding on proofs as long as 50 steps.

It turned out the Collins team’s lack of experience with Coq or Copland was a
benefit for our experiments, as it kept our prompting approach simple, as well as
representative of what a new CoqDog user would attempt. One obvious second
“shot” was to prompt the chatbot with error messages from Coq when attempting
to prove the initial GPT-produced proof, to which the chatbot responded with
an improved proof in many instances. The chatbot also reacted well to additional
prompts to use particular Coq primitives in its proofs (see Figure 1), thereby
improving the quality of its proof output. It also, based on the structure of
the Copland proofs presented as input, began to imitate the style of the KU



Fig. 1: CoqDog user interface, showing multi-shot proof refinement.

developers, for example providing a “tactic per lemma” without being asked, see
Figure 10.

We were eventually able to submit more than 1,400 lines of lemmas to GPT-
4, comprising some 58 lemmas, and saw no meaningful degradation in the quality
of the output as the proof files got longer. Along the way, we discovered that
not all LLMs were created equal in this regards; particularly, GPT-4 worked
significantly better on the Coq proof generation task than any other model that
we tried, including its predecessor GPT-3.5. (We were later able to narrow the
gap between the two when we were given permission to utilize GPT-3.5 in “multi-
shot” mode.) Additionally, we found that while our time on GPT-4 was restricted
more than other LLMs, it was so much more e"cient at producing valid proofs
that it was worthwhile just to be a bit more circumspect in our inputs in order
to access the higher-quality GPT-4 output.

Despite our early successes, as we pushed CoqDog to do more, we (unsurpris-
ingly) encountered scalability and usability issues. In the sections that follow,
we discuss two research problems identified during the development and evalu-
ation of the CoqDog system, namely LLM Contextual Prompt Constraints and
the Measurement of Proof Repair Quality. We outline our methodologies for ad-
dressing each of these challenges, present our key findings, and discuss current
limitations as well as future work.

6 LLM Contextual Prompt Constraints Problem

In this section, we present our approach to address a challenging problem that
we faced while evaluating the CoqDog system, originating from the prompt con-
textual constraints of LLM models, further exacerbated by the limitations of
these models in logically classifying data. Such limitations may compromise the
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Fig. 2: CoqDog Copilot workflow comprises several components. The user inputs
lemmas and queries for proof, along with strategic proof hints. The assistant re-
trieves relevant data from training material and uses its customized RAG system
for the Copland proofbase. CoqDog then generates proof candidates, which the
user submits to the theorem prover. The theorem prover attempts to verify the
lemmas using the generated proof candidates, providing feedback to the user and
the assistant until a correct proof is achieved. The assistant sends conversations
to the CQAS system for quality evaluation and visualizations.

e"cacy of the copilot in realistic scenarios where the system necessitates the
user to provide su"cient and logically related context for successful proof.

Initially, it was not overly challenging to equip CoqDog copilot with su"cient
context in line with the constraints of the prompts during dialogues, particularly
when the copilot prompted the user to provide specific definitions to proceed.
However, the complexity of this issue escalates when a number of relevant lemmas
need to be provided in the context to prove a theorem, where said lemmas are
scattered in a large proofbase, a proofbase that is too large to provide as context.

Lemma and Proof Recommendation System Based on LLM RAG To
mitigate these substantial challenges in the Copland case study, which encom-
passes a repository of approximately → 21, 000 lines of Coq code, we explored the
integration of text-embedding and augmented data retrieval. This was coupled
with the development of a semantic search to implement a customized Lemma
and Proof recommendation system for the Copland case study, as depicted in
Figure 3.

We designed this system to assist CoqDog in o!ering logically sequenced,
semantically, and contextually relevant lemmas and proofs tailored to the target
lemmas as per user requests. This is implemented as a Retrieval-Augmented



Fig. 3: Copland’s latent vector space
(3D) and CoqDog recommendations.

Fig. 4: Sampling Copland’s 2D latent
space using cosine similarity classification.

Generation (RAG) system supported by a ranking system that prevents unsound
cycles in the reasoning recommendation process.

The system parses Coq files and extracts lemmas and proofs from the repos-
itory. These elements are indexed in a CSV file that maintains their order as
presented within the Coq files. The Coq files adhere to the order specified in
the _CoqProject file. Thus, the CoqDog ranking system is designed to help
the recommendation system avoid import chain cycles. If file f1 requires file f2,
then f1 will have a higher rank. Additionally, it indexes the lemmas such that if
lemma 1’s proof calls lemma 2, then lemma 1 will have a higher index. We then
use the GPT text-embedding-ada-002 model, which transforms them into vec-
tor representations, storing the lemmas, proofs, and their corresponding vectors
in a persistent data store. The CoqDog system then processes the user-input
source lemma for verification and invokes the recommendation system, which
transforms the lemma into a vector. We refer to the space of all these vectors by
Copland’s latent vector space, Figure 3. Then the system indexes the lemma into
the data store if it does not exist already. The recommendation system employs
the cosine distance function to classify the vectors, Figure 4, and identifies the
k-nearest neighbors, Figure 3, while filtering out lemmas with greater or equal
indices to prevent logical circularity in its recommendations. The CoqDog recom-
mendations classification approach takes into consideration topical similarities
that are logically ordered; hence, we describe it as a topi-logical classification.

Observe that our novel topi-logical recommendation system design addresses
a problem with cosine similarities: while they provide a topological neighborhood
of the target lemma e"ciently, they do not account for the logical or functional
similarities of the neighbors in the context of theorem proving.

Finally, we engineered CoqDog’s user prompt to send a request to use the
system’s recommendations to generate a proof candidate for the source lemma
using GPT4 when the context size is less than 8000 tokens or GPT3.5-turbo when
the context size is greater than 8000 but less than or equal to 16000 tokens. These
boundaries adhere to our OpenAI account’s context sizes for each model at the
time of writing this paper. Note that when this research was being performed,
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Fig. 5: CoqDog Conversation Quality Assessment System (CQAS) workflow.

GPT-4 Turbo did not exist, so context size limitations were a significant issue
and it will continue to be so for very large libraries.

7 Proof Repair Quality Assessment Problem

The conventional method for evaluating a text generated by Large Language
Models involves token comparisons to a pre-defined golden example [11, 13, 14],
followed by accuracy calculation. However, in theorem proving, it is crucial to
acknowledge that syntactically di!erent correct proofs of the same theorem are
equally valid; as a result, this approach to accuracy assessment may lead to sig-
nificant undervaluation of the model, prematurely leading the machine learning
researcher towards far more expensive and elusive formal proof training data
sets to fine-tune the models or reduce the creativity parameters of the models,
which would be counterproductive.

The complexity of this challenge escalates when dealing with conversational
multi-shot prompting, where the overall quality of the conversation’s user prompts
impacts output assessment [11,14]. The scarcity of formal proofs for similar lem-
mas exacerbates the challenge even further, making the development of practical
proof repair prompts and conversation quality assessment methods an urgent
and compelling problem to solve. To address this open problem for the CoqDog
copilot in the context of the Copland case study, we developed a Conversation
Quality Assessment System (CQAS) for CoqDog copilot, illustrated in Figure 5.

7.1 CoqDog Conversation Quality Assessment System (CQAS)

To build CQAS, we have equipped CoqDog with a conversation history
management functionality, enabling users to save conversations as machine-
readable JSON files by the CQAS system. The CQAS parses the targeted lem-
mas and their proof shots lists and organizes them into JSON dictionaries of the
format {lemma-name: value, proof-shots: [proof-shot_1, proof-shot_-
2, . . . , proof-shot_n]}, where proof-shot_n is typically the final correct
proof verified by Coq. We refer to these as the proof-shots dictionaries.

Subsequently, the CQAS collects and statistically analyzes a set of novel
proof repair metrics from CoqDog proof-shots dictionaries at three levels:



Fig. 6: CQAS Metrics Calculation for MoreLists Conversation.

– Lemma — also referred to as dialogue. Corresponds to one proof-shot
dictionary and represents the individual unit within a CQAS proof repair
conversation analysis.

– Conversation — the whole sequence of dialogues in a JSON conversation file,
typically representing a complete interaction for a sequence of lemmas.

– Sample Space — an analysis of all conversation files in a given sample space,
combining insights from multiple conversations.

CQAS reports these metrics in CSV files and visualizes the statistical analysis
for the user, as seen in Figure 7 and Appendix A Figure 8. Specifically, the CQAS
methodology tries to practically correlate CoqDog dialogues, conversations, and
sample spaces with statistical histograms to understand the distributions of se-
lected metrics. This method allows us to practically di!erentiate between higher
and lower-quality conversations while evaluating CoqDog on the Copland case
study (as in Figure 7). Additionally, CQAS employs novel mathematical model-
ing to discern trends within these metrics at the dialogue level, o!ering further
insights into the quality of the hints and prompts provided by users during the
interactions with the CoqDog system.

7.2 CQAS Proof Repair Metrics

We designed CQAS to calculate four metrics for each proof-shot dictionary and
to present it in CSV tables, as shown in Figure 6. 3 Our metrics are defined
to compare the proof candidate in a dialogue with a relative golden example,
specifically proof-shot_n. The metrics are correlated with the user’s proof re-
pair e!orts to achieve a correct proof. Furthermore, they are designed to help
us evaluate the conversation quality in terms of statistical analysis over user
prompts. This allows us to vet the best prompting strategies and improve our
interactions over time. Next, we illustrate each proof repair metric calculated by
CQAS.
3 Tables for the other clusters are provided in Appendix A.



Number of shots The length of the proof-shots list is an important proof
repair metric, referred to as number of shots. We use this metric to monitor the
number of repair shots required in the dialogue to transform an initial proof
candidate into a valid proof.

This count of shots serves as one of the primary metrics for CQAS to statis-
tically infer the quality of interactions with the CoqDog system from two per-
spectives: automation and success rate. The lower the number, the greater the
automation, indicating less human e!ort is needed. Similarly, a smaller number
indicates a higher success rate for the model in a given dialogue.

Furthermore, this metric allows for the convenient calculation of median,
mean, and other central statistical measures at both conversation and sample
space levels, as shown in Appendix A Figure 9.

This aids in statistically inferring the quality of one or more CoqDog conver-
sations as well as the sample space, as we will demonstrate in Section 8, Figure 7
and Appendix A Figure 8.

On the flip side, although the number of shots metric is significantly helpful
in the aforementioned cases, it only provides the number of shots required to
achieve a 100% correct proof without o!ering further details about the other
proof candidates. This may obscure the impact of individual proof repair hints
within the dialogue.

7.3 Proof Repair Oscillation Metrics

Mitigating the limitations of the number of shots metric proved to be a chal-
lenging task. To address this, we had to define a new set of metrics, each aimed
at measuring a di!erent aspect of the proof repair process. Specifically, users may
desire to modify the initial proof candidate by removing existing steps, adding
new ones, or even adjusting their alignments. For instance, it is crucial to note
that while a modification to the prompt may improve the output for one input,
it could potentially degrade performance for others [14].

Our approach, leveraging a Coq proof checker to pinpoint hallucinations,
o!ers greater flexibility and precludes the need for more strict string matching
methods as outlined in [11,13].

In the sequel, we illustrate our CQAS’s novel customized metrics, which are
designed to measure and analyze the modifications of the proof repair process
within a dialogue.

Words Count. This metric was initially defined by a ratio between the num-
ber of words nw of each proof_shot_i and proof_shot_n the relative golden
example.

Specifically, it is calculated as:

di!_w =
nw in proof_shot_i↑ nw in proof_shot_n

nw in proof_shot_n
(1)



The definition of di!_w responds to the addition and removal operations
in a proof repair process, and the resulting value can vary either positively or
negatively.

Furthermore, the value di!_w→ = |1 - |di!_w|| can be greater than one or
less than one. It must be 1 when the correct relative golden example is reached
since |di!_w| will be zero.

Note that the absolute value |di!_w| can provide insight into the magnitude
of the change occurring at each proof repair shot, regardless of the direction. In
our study, we aimed to see this value approaching zero during the proof repair
process or, equivalently, the value di!_w→ approaching one.

In CQAS CSV files such as shown in Figure 6, we report di!_w→ for the user,
as it can be interpreted more easily.

For simplicity, we define a word as any sequence of characters except for white
spaces or new lines. The CQAS system will then split the proof shot strings using
white spaces to identify the number of words for this metric.

Tokens Count. The Word Count metric has inherent limitations, particularly
in that it does not respond to changes at the sub-word level during the proof
repair process. Therefore, we employ the Token Count metric. We used gpt-4
model tokenizer, o!ered by OpenAI library, to find the number of tokens, denoted
as tk_n.

We define this metric analogously to the previous one but using tk_n instead
of the number of words.

di!_tk =
tk_n in proof_shot_i↑ tk_n in proof_shot_n

tk_n in proof_shot_n
(2)

Similarly, we define di!_tk→ = |1 - |di!_tk|| and report it in CSV file.
While this metric shares similarities with the previous one, it is more sen-

sitive to textual changes. This characteristic enables it to account for sub-word
changes. However, there is a cost associated, as using the tokenizer, while very
inexpensive, is not free.

Cosine Distance. It should be noted that both the Token Count and Word
Count metrics are sensitive to syntactic changes in the proof step. However,
that alone may not be particularly helpful in providing detailed insight into the
semantic changes during the proof repair process.

For this reason, we define the Cosine Distance metric. The CQAS system
converts every proof_shot_i into a vector V using the text-embedding-ada-002
and then computes the cosine distance between the proof shot and relative golden
example proof_shot_n.

Cosine Distance = Cosine_dist(V(proof_shot_i), V(proof_shot_n)) (3)

This metric can provide the user insights into semantic changes and is less
sensitive to syntactic changes than the previous two metrics. In particular, the



(a) Lower quality conversation for
MoreLists clusters (5 shot correctness).

(b) Higher quality conversation for
MoreLists clusters (3 shot correctness).

Fig. 7: Novel CQAS visualized statistical distributions to describe conversation
quality. The figure (7b)’s leftward skew signifies higher quality through more
automation and a higher success rate. CQAS quality assessment at the conver-
sation level compares results without (7a) and with (7b) well-structured gener-
ative proof strategies. The same sets of lemmas but di!erent prompts by the
same user led to significantly better results for the same model, demonstrating
the impact of prompt structuring on performance, and it shows that CQAS’s
visualization system can detect this clearly.

metric is capable of detecting changes in the order of words and tokens in proof
steps, such changes can elude detection by the Word Count and Token Count
metrics. Ideally, this metric should be zero when the relative golden proof is
reached. We aim to see it approach zero during the repair process as well.

8 Experimental Evaluation

The Copland repository, developed over many years, comprises about 21,000
Coq Lines of Code (LoC) and 213 lemmas. Its lemmas are classified into two
categories: Copland Reference Semantics and Copland Virtual Machine and Ap-
praisal Semantics. The CQAS categorizes these into target lemmas (58) and
library lemmas (155). The library lemmas were indexed as explained in Sec-
tion 6 while the target lemmas were used for assessment. CQAS topi-logically
orders most of Copland Virtual Machine and Appraisal Semantics lemmas with
higher indices. Therefore, due to logical dependencies, our current focus is on
the Copland Reference Semantics lemmas for system assessment. This group’s
lemmas are spread across 13 Coq files, totaling around 4,927 LoC, with 1,400
LoC in target lemmas.

8.1 Key Results

We employed the CQAS methodology in our assessment, as described in Sec-
tion 7. Specifically, the target lemmas were analyzed in three disjoint conver-



sations. In the context of Copland’s latent vector space, as seen in Figure 3
and Figure 4, each conversation may include one or more topi-logical clusters of
lemmas. We summarize our main results as follows:

– CQAS has e!ectively enabled us to identify a novel approach to interacting
with GPT-4 and GPT-3.5 models for theorem-proving purposes. Notably, the
strategic inclusion of human-like, high-level hints to the proof repair prompts
such as use lemma1,. . . ,lemma_n, and use tactics tac1,. . . , tac_n as
appropriate can significantly improve the quality of the proof candidates,
as shown in Figure 7.

– Without additional fine-tuning of the backend models, our approach has
helped us to achieve a success rate exceeding 60% for proof generation using
the CoqDog GPT-4 option in a single ‘shot’. Moreover, approximately 30%
more lemmas were proven with a second ‘shot’ (resulting in about 90% overall
correctness). With three ‘shots’, the overall proof correctness rate increases
to 97%, as shown in Appendix A Figure 8d.

These results suggest that, without well-structured proof repair hints ap-
pended to the context prompts, users might not fully be able to leverage the
potential of LLMs such as GPT-4 and GPT-3.5 models in formal reasoning.

8.2 Current Limitations and Future Work

While our approach was significantly helpful in harnessing the knowledge of the
backend GPT models, extending their understanding without additional train-
ing, and achieving a high success rate within three attempts on the current
sample, we plan to expand the coverage. Our future goal is to include other
lemma groups and a larger code sample from the Copland code base. Further-
more, we believe that enhancing the system’s ability with definition retrieval
could automate the process further.

Additionally, while we found the lemma-proof recommendation’s logical cir-
cularity solution to be sound, it may produce redundant recommendations in
cases where the topological lemma neighborhoods of two separate targeted lem-
mas in the same conversation intersect in the Copland’s latent vector space. This
issue can be mitigated by implementing a redundancy filter. Another aspect for
development is a voting system. This system could enable users to recommend
hints to the CoqDog system, thereby enhancing its decision-making process. We
also plan to adapt the technologies developed for our Coq assistant to other
interactive theorem provers and SMT solvers, such as Isabelle, Lean, Verus, and
the CBMC model checker.

9 Related Work

Our work draws on two distinct areas of research: high-assurance remote
attestation, and the use of Large Language Models for Automated Reasoning.



9.1 Remote Attestation

Remote attestation [5, 7] is a technique for gathering and appraising evidence
from a remote system to determine if that system adheres to some policy. Typ-
ically, remote attestation is applied to measurements gathered when software is
loaded and started [26] or during system runtime [5,17,19]. Regardless, evidence
is gathered with the expressed intent of appraising system behavior.

Runtime attestation is typically centered on execution of attestation protocols
by attestation managers. Each protocol specifies measurements, cryptographic
operations, and work dispatch to execute in a specific order on an attestation
manager. Measurements gather evidence directly from their target. Measure-
ments range in complexity from simple file hashes to contextual measurements
describing kernel memory. Cryptographic operations are typically signing oper-
ations that guarantee both evidence integrity and authenticity. Dispatch oper-
ations make requests of other attestation managers, providing a mechanism for
layered attestations [24] and scaling attestation to large systems.

Copland [23] originated as a domain specific language for representing at-
testation protocols for run-time, layered attestations [24]. Copland’s formal se-
mantics support construction of verified attestation tools and components. Cop-
land has purpose built language support for coordinating and distributing work
in highly flexible ways suitable for complex attestation algorithms. The same
flexibility supports moving from attestation to the more general problem of sys-
tematically gathering di!erent kinds of evidence that may represent test results,
verification results, certification outcomes, or any other information useful for
maintaining the measured system.

Because Copland protocols are data structures, they are first-class in our at-
testation development environments. Specifically, they support reasoning about
and manipulating protocols. The beginnings of this capability are seen here, but
significant work remains to approach maintaining protocols and the evidence
they gather over an evolving system.

9.2 Using LLMs for Automated Reasoning

Researchers from OpenAI performed some of the earliest research on the use of
LLMs for mechanical theorem proving in 2020 [22]. The OpenAI team utilized
a GPT-3 base, but also produced model variants that had a higher mix of input
from Github, arXiv Math, and Math StackExchange (the latter was associated
with a 10% improvement in proof performance). The result was GPT-f, a proof
assistant for Metamath. Metamath is a simple proof language targeted to math-
ematics [10]. GPT-f was able to achieve a peak Metamath proof success rate of
56%, and proved some 200 Metamath theorems. GPT-f also discovered a few
shorter proofs for existing lemmas in the Metamath proofbase, proofs which the
Metamath team later incorporated.

Other groups have studied proof generation and repair using LLMs. First
et al. report a success rate of approximately 50% for a proof repair scenario
for Isabelle/HOL [6], using Minerva [9], a large language model pretrained on



a mathematics corpus. Minerva is based on Google’s PaLM LLM [3]. Many of
these same researchers investigated proving theorems in Coq using GPT-3.5
and GPT-4 [28], similar to our work. Their paper, however, focused more on
diagnosing failed proof attempts when using the LLM rather than characterizing
their success rate, so it is di"cult to directly compare their results to ours.

Researchers have also utilized LLM technology on related problems in auto-
mated reasoning. LLMs have been used to discover program invariants, in par-
ticular loop invariants, a well-known di"cult problem in code verification, with
notable success [16, 27]. Researchers at Stanford and VMware Research are de-
veloping an approach for closed-loop verifiable code generation called Clover [25].
Clover considers three classes of artifacts created during development using the
verification-enhanced programming language Dafny [8], namely the English lan-
guage Specification for a given Dafny program, the Code in Dafny, which is
interspersed with formal Annotations. These artifacts may be generated manu-
ally or automatically through the use of generative AI technology. Clover then
performs a set of consistency checks amongst the artifacts, including: Dafny for-
mal verification, to ensure that the code is functionally correct with respect to its
annotations; reconstruction of the annotations from the code (nominally using
LLM technology) to ensure that the annotations capture the full functionality
of the code; and reconstruction of the Specification from the Annotations or the
Code to determine Specification accuracy. On benchmark Dafny programs con-
taining both correct and incorrect artifacts, the prototype Clover system accepts
correct artifacts 75% of the time, and rejects 100% of incorrect artifacts.

10 Conclusion

In approximately four months of intense investigation, we were able to de-
velop a very capable Coq proof repair capability using LLMs. In future work, we
look to increase the number of lines of Coq input that can be submitted to the
LLM system, continue to investigate novel “multi-shot” prompting scenarios that
can rapidly refine the LLM output to produce a valid proof, research the LLMs
capability to generate subsidiary lemmas on its own in order to lead to a proof,
as well as explore novel ways that LLMs can be utilized to assist the process
of high-assurance code extraction from theorem provers such as Coq to various
programming languages. We also plan to adapt the technologies developed for
our Coq assistant to other interactive theorem provers and SMT solvers, such
as Isabelle, Lean, Verus, and the CBMC model checker.
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A CQAS Metrics Tables, Statistical Evaluations, and

Visualizations

(a) Conversational quality assessment
for LTS cluster.

(b) Conversational quality assessment
for MoreLists cluster.

(c) Conversational quality assessment
for MonadLaws cluster.

(d) Overall quality assessment using all
clusters combined.

Fig. 8: The figure shows an example of CQAS combined quality assessment for
three clusters.



(a) CQAS central tendency values for
LTS clusters.

(b) CQAS central tendency for
MoreLists clusters.

(c) CQAS central tendency for Monad-
Laws cluster.

(d) Overall quality assessment for the
sample space using all clusters com-
bined.

Fig. 9: CQAS quality assessment measures of central tendency at the sample
space level.



Fig. 10: The bottom left corner shows that CoqDog can generate tactics on the
fly based on Chain-of-Thought conversational pattern detection with the user.

lemma-name di!_w’ % di!_tk’ % cosine distance number of shots
firstn_append [’100.0%’] [’100.0%’] [0] 1
skipn_append [’100.0%’] [’100.0%’] [0] 1
skipn_all [’100.0%’] [’100.0%’] [0] 1
skipn_nil [’100.0%’] [’100.0%’] [0] 1
firstn_all_n [’100.0%’] [’100.0%’] [0] 1
skipn_all_n [’100.0%’] [’100.0%’] [0] 1
firstn_in [’65.6%’, ’100.0%’] [’48.9%’, ’100.0%’] [0.012, 0] 2
skipn_in [’100.0%’] [’100.0%’] [0] 1
skipn_zero [’100.0%’] [’100.0%’] [0] 1
in_skipn_cons [’56.2%’, ’87.5%’, ’100.0%’] [’61.7%’, ’87.2%’, ’100.0%’] [0.048, 0.005, 0] 3
nodup_append [’86.3%’, ’100.0%’] [’78.4%’, ’100.0%’] [0.002, 0] 2
in_cons_app_cons [’85.7%’, ’78.6%’, ’100.0%’] [’85.7%’, ’97.6%’, ’100.0%’] [0.061, 0.049, 0] 3
earlier_in_left [’100.0%’] [’100.0%’] [0] 1
earlier_in_right [’100.0%’] [’100.0%’] [0] 1
earlier_left [’56.0%’, ’100.0%’] [’49.2%’, ’100.0%’] [0.023, 0] 2
earlier_right [’75.0%’, ’100.0%’] [’89.8%’, ’100.0%’] [0.044, 0] 2
earlier_append [’75.0%’, ’100.0%’] [’68.2%’, ’100.0%’] [0.028, 0] 2
earlier_append_i! [’83.5%’, ’82.6%’, ’100.0%’] [’92.2%’, ’89.2%’, ’100.0%’] [0.033, 0.034, 0] 3
earlier_cons [’100.0%’] [’100.0%’] [0] 1
earlier_cons_shift [’100.0%’] [’100.0%’] [0] 1

Table 1: CoqDog CQAS Metrics Calculation for MoreLists Cluster



lemma-name di!_w’% di!_tk’% cosine distance number of shots
monad_left_id [’100.0%’] [’100.0%’] [0] 1
monad_right_id [’95.5%’, ’100.0%’] [’97.9%’, ’100.0%’] [0.032, 0] 2
monad_right_id_ (S A) [’100.0%’] [’100.0%’] [0] 1
monad_right_id_ (S A B C) [’99.0%’, ’100.0%’] [’99.6%’, ’100.0%’] [0.008, 0] 2
monad_comp_ (S A B C) [’86.6%’, ’100.0%’] [’91.2%’, ’100.0%’] [0.004, 0] 2
monad_get_get (S A) [’100.0%’] [’100.0%’] [0] 1
monad_get_put (A) [’100.0%’] [’100.0%’] [0] 1
monad_put_get (S A) [’100.0%’] [’100.0%’] [0] 1
monad_put (S) [’85.7%’, ’100.0%’] [’88.0%’, ’100.0%’] [0.013, 0] 2
fa_fa (A B) [’13.3%’, ’100.0%’] [’17.6%’, ’100.0%’] [0.145, 0] 2
hlhl (A B) [’100.0%’] [’100.0%’] [0] 1
hghg (A B) [’100.0%’] [’100.0%’] [0] 1

Table 2: CoqDog CQAS Metrics Calculation for MonadLaws Cluster.

lemma-name di!_w’ % di!_tk’ % cosine distance number of shots
step_pl_eq [’100.0%’] [0] 0 1
step_seval [’100.0%’] [0] 0 1
star_transitive [’81.8%’, ’100.0%’] [0.015, 0] 0.015, 0 2
star_star [’100.0%’] [0] 0 1
star_lstar [’100.0%’] [0] 0 1
star_seval [’83.3%’, ’100.0%’] [0.015, 0] 0.015, 0 2
steps_preserves_eval [’100.0%’] [0] 0 1
star_strem [’100.0%’] [0] 0 1
star_stls [’100.0%’] [0] 0 1
star_stbsl [’100.0%’] [0] 0 1
star_stbsr [’100.0%’] [0] 0 1
star_stls [’100.0%’] [0.013, 0] 0.013, 0 2
star_strem [’100.0%’] [0.011, 0] 0.011, 0 2
star_stbsl [’100.0%’] [0.009, 0.01, 0.009, 0.008, 0] 0.009, 0.01, 0.009, 0.008, 0 5
star_stbp_exists [’70.0%’, ’100.0%’] [0.048, 0] 0.048, 0 2
star_stbparr [’82.7%’, ’82.7%’, ’71.9%’, ’80.0%’, ’100.0%’] [0.009, 0.01, 0.009, 0.008, 0] 0.009, 0.01, 0.009, 0.008, 0 5
star_stbp [’100.0%’] [0.008, 0.002, 0.008, 0] 0.008, 0.002, 0.008, 0 1
correct_path_exists [’82.7%’, ’82.7%’, ’71.9%’, ’80.0%’, ’100.0%’] [0.009, 0.01, 0.009, 0.008, 0] 0.009, 0.01, 0.009, 0.008, 0 5
never_stuck [’100.0%’] [0] 0 1
nstar_transitive [’100.0%’] [0.008, 0.002, 0.008, 0] 0.008, 0.002, 0.008, 0 4
nstar_star [’87.5%’, ’87.5%’, ’87.2%’, ’87.2%’, ’100.0%’] [0.008, 0.002, 0.008, 0] 0.008, 0.002, 0.008, 0 4
nstar_nstar [’90.3%’, ’90.3%’, ’100.0%’] [0.007, 0.007, 0] 0.007, 0.007, 0 3

Table 3: CoqDog CQAS Metrics Calculation for LTS Cluster.
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